
A Dynamic Platform for Runtime Adaptation
Hubert Pham,∗ Justin Mazzola Paluska,∗ Umar Saif,† Chris Stawarz,∗ Chris Terman∗ and Steve Ward∗

∗MIT CSAIL, Cambridge, MA, USA
{hubert,jmp,cstawarz,cjt,ward}@mit.edu

†Lahore University of Management Sciences, Lahore, Pakistan
umar@lums.edu.pk

Abstract—We present a middleware platform for assembling
pervasive applications that demand fault-tolerance and adaptivity
in distributed, dynamic environments. Unlike typical adaptive
middleware approaches, in which sophisticated component model
semantics are embedded into an existing, underlying platform
(e.g., CORBA, COM, EJB), we propose a platform that imposes
minimal constraints for greater flexibility. Such a tradeoff is
advantageous when the platform is targeted by automatic code
generators that inherently enforce correctness by construction.

Applications are written as simple, single-threaded programs
that assemble and monitor a set of distributed components. The
approach decomposes applications into two distinct layers: (1)
a distributed network of interconnected modules performing
computations, and (2) constructor logic that assembles that
network via a simple block-diagram construction API. The
constructor logic subsequently monitors the configured system
via a stream of high-level events, such as notifications of resource
availability or failures, and consequently provides a convenient,
centralized location for reconfiguration and debugging. The
component network is optimized for performance, while the
construction API is optimized for ease of assembly.

I. INTRODUCTION

Typical pervasive and mobile computing environments de-
mand a degree of adaptivity beyond that supported by con-
ventional application models. In order to maintain continuity
of service, a mobile computing application must be able
to discover and opportunistically exploit available resources,
respond to component failures, and adapt its behavior ac-
cording to the changes in its environment. While certain
middleware platforms (e.g., CORBA, Microsoft .NET/DCOM,
and Enterprise JavaBeans) provide a modular, component-
based approach to application construction, the demand for
adaptivity has motivated an additional layer of middleware, in
the form of models that support adaptive applications (e.g.,
[1], [2]) as well as architectural description languages (ADLs)
designed to explore, describe and verify run-time adaptive
application architectures and styles ([3], [4], [5]).

Typical middleware models choose an underlying platform
and extend it to a) support adaptivity and consequently b)
impose a set of semantic constraints to ensure correctness
([6]). While this approach has value in the production and
verification of reliable systems, the semantic framework and
compile-time constraints imposed are designed to ensure the
correctness of human-generated designs: an engineer is ex-
pected to grasp the model, devise a solution that fits the global
semantic constraints, and interpret compile-time errors that
guide his development of a certifiably correct implementation.

The value of a tightly-constrained semantic framework and
compile-time verification becomes more questionable when
the designs being processed are machine generated, e.g. by
the goal-oriented planner of [7]. In the latter approach, source
code is automatically generated at run time in response to
run-time inputs, moving the generation of code from the
human-centered development process to become an aspect
of the run-time adaptation mechanism. Snippets of code are
generated by scripted Techniques from an open-ended variety
of sources, pieced together at run time to satisfy current
goals, and executed on a middleware platform. There is no
good mechanism at this point in the model to enforce global
semantic constraints or to interpret compile-time error reports.

A more appropriate target middleware platform for
automatically-generated designs is provided by run-time in-
terpretive mechanisms (as opposed to compile-time, static
mechanisms), substituting dynamic typing and minimalist se-
mantics for strong models and verification tools. The designs
produced by a planning process, and subsequently executed
on the middleware platform, must be correct by construction,
or those designs will fail. Because the planning process is
entrusted with ensuring correctness in the code it generates,
enforcing strong model semantics in the platform would be
redundant at best, and at worst, potentially limit the adap-
tivity of the platform to that envisioned by the model. We
propose that the middleware platform should be analogous
to assembly language—unconstrained and flexible—leaving
verification and correctness the concern of the compiler (i.e.,
runtime planning process) that generates the assembly code.

To address these needs, we have developed an adaptive
middleware platform for application assembly that provides a
target for applications whose structure is dynamically specified
and reconfigured by run time processes. Rather than retrofit
adaptivity into existing platforms, many of which inherently
feature strong checking, we selected and implemented a set of
lightweight mechanisms—network objects, liveness monitor-
ing, composition, and hotswapping—to form a flexible, adap-
tive platform. Like many middleware models, our platform
caters to fault-tolerance and adaptivity by promoting a strong
separation between application-construction code and the un-
derlying generic components that perform the computation.
The constructor logic is responsible for assembling a system
and monitoring its subsequent operation in a simple, single-
threaded runtime environment. The system persists for as long
as the application is active, reacting to runtime notifications of

failures and newly-discovered resources, while the underlying
modules may be opportunistically employed, replaced and
adapted.

A. Design Goals

Our middleware platform targets applications that span
heterogeneous devices, such as servers, desktops, handhelds,
and mobile phones, and hence platform- and language-
independence is a key requirement. In addition to supporting
runtime adaptive behavior as described above, our work also
strives to meet performance requirements: the runtime system
must not impose any overhead on performance-critical com-
putations and communication streams. Finally, our platform
focuses on providing a dynamic runtime mechanism to enable
late binding and reconfiguration, catering to rapid prototyping
by either human developers or automatic planning logic. The
platform, however, relies on the planning process to determine
when to trigger adaptation.

B. Usage Scenarios

The main contribution of this work is a software platform
for structuring adaptive, fault tolerant distributed applications
designed to meet the above design requirements. There are
several ways developers might use our platform:
• Target for automatic code generation. The motivating

application for our framwork is its use as an “assembly
language” by systems that generate code automatically
or manage adaptation decisions based on context, such
as our Goals Planner [7].

• Library for prototyping adaptive applications. Al-
though motivated by the use of a goal-oriented planner
as the constructor logic, our platform allows the rapid
prototyping of adaptive applications via a simple top-
level program that assembles components and monitors
their subsequent operation. In such use, our work can
be viewed as a scripting language alternative to environ-
ments with stronger semantics and more powerful ver-
ification tools: the platform provides enough constructs
and mechanisms without imposing complex constraints
or enforcing checks. With adequate testing, applications
of reasonable size built using our platform can run on
their own without additional middleware or verification.

• Substrate for evaluating middleware models. Our plat-
form is simple enough to extend that it is potentially
useful as a substrate for experimenting with sophisticated
middleware component models. As many middleware
systems traditionally bind their models to a specific
language (e.g., Java) or a large component runtime (e.g.,
CORBA), our platform serves as a lightweight platform-
and language-independent alternative.

We have used our platform both as a runtime substrate for
the Goals Planner and to hand-build applications; Section IV
describes our experience. Prior to that, Section II describes
the platform in detail, and Section III overviews related work.
Section V highlights implementation details, and Section VI
presents micro-benchmarks. Finally, Section VII concludes.

Fig. 1. Overview System Model. The constructor logic instantiates, con-
figures, monitors, and potentially re-configures the underlying network of
distributed components that collectively implement the desired application
behavior.

II. THE PLATFORM

With our platform, applications divide into two layers: a
constructor logic layer and a component implementation layer.

Synchronous constructor logic, produced either by auto-
matic code generators or by hand during prototyping, in-
stantiates, configures, and connects together a set of dis-
tributed, re-usable components, whose execution produces the
desired application behavior. Once the component network
is constructed and activated, the individual components run
largely autonomously from the constructor logic. The commu-
nication paths between the distributed components are high-
speed, asynchronous data links and do not incur the overhead
associated with the synchronous communication mechanism
used by the constructor logic to configure its components.
The constructor logic monitors the operation of the resulting
network via a serial stream of high-level events generated
from and filtered within the component network, enabling it
to reconfigure the running component network—or make other
policy decisions—in response to environment changes, within
a single-threaded environment. The relationship between the
constructor logic and the components it monitors is depicted
in Figure 1.

With our framework, it is natural to write applications
that persist and adapt in the face of component failures
because adaptivity policy is centralized. Additionally, the bi-
level architecture separates various efficiency concerns and
optimizes the form of efficiency that matters most to each
layer. Operations in the component layer dictate run-time per-
formance of the application; given our efficiency requirement,
its exploitation of concurrency, multiple hosts, and arbitrary
technologies cannot be restricted in ways that constrain perfor-
mance. The constructor logic, on the other hand, is not directly

Fig. 2. Voice Shell distributed application.

performance-critical, and consequently may feature a simple
single-threaded code environment for debugging, maintaining
and reconfiguring component networks.

A. Construction API

This paper focuses on the construction logic and its interface
to the component layer. Although there are many plausible
semantic models for the constructor logic (e.g., generation of
program text or use of language-specific reflection APIs), the
constructor logic’s block-diagram construction model is moti-
vated by both a platform independence goal and the desire to
provide a simple and versatile construction API. We strived to
keep the library compact to minimize both the learning curve
(for developers) and complexity (for code generators). Table I
summarizes several library functions used by examples in this
text. The choice of a block-diagram construction approach is
inspired by ADLs and middleware models (e.g., [8], [9], [10],
[4], [11], [3]) that express applications as component graphs,
with adaptation as transformations on those graphs.

Code generators that target our platform first produce con-
struction logic to build applications; they may subsequently
adapt these applications by a) modifying the application
structure via component hotswapping, or b) amending the
constructor logic with additional event handling.

B. Example: Voice Shell

Figure 2 illustrates a simple yet real voice shell application,
in which spoken user commands are translated to system
behaviors. A user might say “play jazz” into a thin client; the
utterance is sent to a speech recognition module on the local
network, which in turn relays text representing the command.

To implement the voice shell, the construction logic 1) finds
and instantiates both a Speech Recognizer component and
an audio source (e.g., the microphone in a handheld), and
2) connects them together. Once constructed, the component
graph runs autonomously and sends recognized tokens to the

constructor logic for processing. The platform takes care of
all the underlying details, providing essential mechanisms like
data marshaling, health monitoring, and event handling, as will
be described.

C. Component Modules
Our platform also provides developers with a rich API for

developing component modules and managing their runtime
life-cycle. We aimed to make it easy to create components
that wrap existing off-the-shelf libraries and programs, such
as a speech recognition engine (in the previous example),
encouraging code re-use and rapid development.

Developers may also compose larger components from
individual component modules. These composites of resources
can then be monitored, replaced, and referenced just like
other component resources. Composition reduces the tedium
of managing and hotswapping instantiated resources, enables
applications to exploit design hierarchy, and is central to
scalability for supporting large, extensible application circuits.

Applying concepts from various ADLs ([12], [10], [13]) and
hierarchical component models ([2], [3]), the basic building
block in the platform is called a Component, an inspectable,
distributed software module with communication ports. A
Pebble is a primitive component and often manifests as a
lightweight, policy-neutral module that implements a specific
operation. A Composite is a collection of interconnected
components (Pebbles or Composites) bundled together as a
new component. Figure 1 depicts a Composite shaded in gray.

D. Essential Mechanisms
We identify and provide a set of practical mechanisms to

construct a flexible and adaptive platform that handles the
details of a distributed application runtime:

1) Network Objects: Network objects provide development
flexibility (by allowing the location of each component to be
specified independently of its function) as well as satisfy plat-
form and language independence requirements (by translat-
ing language-specific APIs to language-independent network
protocols). We wrap all components using lightweight objects
called Network Portable Object Packaging (NPOP). NPOPS
provide the veneer of a simple, sequential, and localized
interface for controlling component networks, while reducing
some development tedium with automatic stub generation.
NPOPS are discussed in more detail in Section V-A.

2) Discovery & Monitoring: To find available components
and adapt to changing resources, the platform runtime re-
lies on two mechanisms for resource discovery and liveness
monitoring. We employ mDNS [14] and dns-sd [15] for
resource discovery and naming in a local peer-to-peer envi-
ronment. However, since these protocols do not reliably detect
device failures, the runtime automatically monitors liveness
of all (distributed) components via a lightweight heart-beat
mechanism, ensuring that applications will at least be aware
of health changes in all dependency resources. The heartbeat
service may be configured as a centralized resource to monitor
components for all application instances (to avoid redundant
connections).

TABLE I
SELECTED LIBRARY FUNCTIONS IN THE CONSTRUCTOR LOGIC API.

Function Description
Find(prop1=val1, prop2=val2, ...) Finds a set of matching factory components
Subscribe(prop1=val1, prop2=val2, ...) Notify the application when components matching properties appear
Component(factory, arg1, arg2, ...) Returns an instantiated component instance
Connect(source, sink, ...) Connects two data-flow ports
Composite(name = Connector(...), ...) Returns a new Composite with named ports
Composite.add(name = Component, ...) Add a named component or connector to a Composite instance
Composite.hotswap(old, new) Replaces an existing component with a new component instance

3) Event Queues: The platform provides a mechanism by
which components, applications, and the liveness monitoring
system can send and receive asynchronous notifications, or
Events. In a large distributed application circuit, a large num-
ber of running components can give rise to a deluge of events
from all levels of the component hierarchy. To effectively
manage these messages, events are filtered, combined, and
serialized before presentation to the constructor logic. Hence,
planning processes typically need only monitor and reason
about program behavior from a central location.

Because a Composite is typically aware of its constituent
components’ behaviors, the Composite collects and may filter
events from its constituents before forwarding the message
stream to its parent Composite. Developers define message
filters, but a reasonable default (pass-through) is used if no
filters are defined.

4) Hotswapping: The constructor logic reconfigures an
activated graph by replacing existing or failed components. If
a component is designed to support hotswapping, the platform
runtime can orchestrate its replacement without disrupting the
running component graph. Otherwise, the constructor logic is
used to pause the component graph before manually conduct-
ing the replacement, which may temporarily disrupt service.
To render a component hotswappable, developers must specify
how to serialize (and de-serialize) a component’s running state.
The runtime performs minimal checking (e.g., it ensures that
a replacement is pin-compatible with the original component)
but purposely leaves the semantics to developers or code
generators.

III. RELATED WORK

A. Remote Procedure Call, Remote Objects

Our model relies on our NPOPS package (Section V-A)
for communication between distributed components. However,
neither RPC nor remote object packages alone are sufficient
to achieve highly reconfigurable and dynamic applications, as
they typically assume relatively static hosts and connections.
The BASE [16] architecture, on the other hand, explores
micro-brokers for embedded devices in dynamic environments.
BASE features a plug-in architecture to better shield the ap-
plication developer from intricacies of the underlying network
and closely resembles our network object mechanism.

B. Middleware Platforms

Our component model for application construction is rem-
iniscent of the software component and the service oriented
architecture paradigms. Related work in this family includes
Sun Jini [17], CORBA CCM [18], [19], Enterprise Java
Beans [20], IETF Service Location Protocol [21], Microsoft
DCOM/.NET/WCF [22], and many others, especially those
that involve web services. These packages are typically tar-
geted at building highly-stable and relatively static enterprise-
level applications from distributed components, whereas our
work focuses on targeting adaptive applications within dy-
namic environments. Rather than retrofit adaptivity into ex-
isting frameworks, many of which inherently feature strong
checking, our work explores a platform design that affords
higher priority to runtime adaptivity and flexibility.

C. Reconfigurable Middleware and ADLs

While our middleware platform strives to be flexible by
imposing few model-semantics constraints, we adopted several
key ideas from numerous models.

Many projects in online application reconfiguration have
inspired our block diagram construction approach, such as the
Acme ADL [10], as well as C2 and Weaves [8]. C2 [23] com-
poses applications in a hierarchy of independent components
that communicate via asynchronous message passing. Weaves
[24] is an object-flow architecture for building applications
that process data flow. DoCoMo’s DPRS [25] invokes a similar
model for inspecting and upgrading mobile phone firmware.

Other middleware systems such as OpenORB [6], [26] focus
on reflective component models as a prerequisite for adaptivity.
While reflection (and introspection) are desirable features, our
work notably differs from OpenORB’s approach of embedding
model constraints (e.g., predetermined meta-spaces) within
the underlying middleware platform. OpenCOM [1] offers a
flexible framework to assemble components at runtime but
necessitates preexisting component binders and loaders to
select and orchestrate the loading and unloading of modules.
Our platform does not rely on binders or loaders (or their
maintenance as the universe of components grows) to select
or instantiate components, deferring that responsibility to the
planning process.

In terms of adaptation approach, Plasma [3] and FASE
[5] argue that adaptation policy decisions should be separate
from generic components. Rainbow [13] provides formalism

to describe such adaptation policies. Fractal [2] articulates
the need for component hierarchy to facilitate code re-use
and sharing. Our platform’s aspiration to separate application
policy from mechanism is similar in spirit to aspect oriented
programming ([27], [28]).

Several other ADLs explore formalism for ensuring adap-
tivity correctness. Taentzer [11] focuses on using a network
of graph structures to manage and model dynamic changes in
distributed applications. Additionally, Georgiadis et al. [29],
like Cheng et al. [9] and the Aster project [4], explore and for-
malize automatic system reconfiguration from sets of formal
constraints. Yau et al. [30] discuss and formalize a context-
aware application model. Plastik [31] integrates ADL-based
verification (using Acme) with the OpenCOM component
model. We imagine that such systems could augment a code
generator or planning process (that targets our platform) by
providing the necessary algorithms for reasoning when to
reconfigure applications.

Finally, other work in reconfigurable middleware include
dynamicTAO [32], which focuses on fine-grain reconfiguration
of the object broker and policies governing the runtime of the
component (e.g., the broker’s threading model), rather than on
adaptation of the application as a whole.

D. Program Composition

Packages that specifically explore (block-diagram) program
composition in a variety of domains also inspire our work,
such as nesC [33] and Knit [34] for composing low-level
operating systems components, as well as Gaia’s LuaOrb
[35] scripting language for controlling components within
active spaces. Other projects, such as Ninja Paths [36], focus
on automatically stringing together a linear set of wide-
area, distributed software components to perform a necessary
service. Our platform’s main distinction from these projects is
its support for both hierarchical component composition and
runtime reconfiguration of component graphs.

E. Context-Awareness

Many contemporary component middleware packages, such
as Aura [37], Gaia [38], Metaglue [39], Pico [40], PCOM
[41] and Tuplespaces / Event Heap [42] focus on providing
strong abstractions for building context-aware applications that
capture and maintain user intent and/or data as users migrate
between differing computing spaces or applications. We view
our work as a potential underlying platform for such systems.
Other packages, such as Speakeasy [43], optimize for peer-to-
peer communications and require that all components export
and ship adapter code to peer components to enable com-
munication. Consequentially, Speakeasy components maintain
control in order to arbitrate how they communicate with
their peers. In contrast, our work trades component interface
standardization for flexibility by maintaining all component
control in the constructor logic rather than intermixed between
the logic and component layers.

Fig. 3. The JustPlay [55] software environment builds a voice shell
from components and connects the Voice Shell to a Planner [7]. If a user
utters “Play Jazz”, the Planner uses our runtime to construct a music-player
application from several components and an audio filter Composite. It adapts
the application by hotswapping components as the environment changes.

F. Data Stream Processing & Overlay Networks

Our platform’s use of data streams between components
is reminiscent of stream processing engines (e.g., Aurora
[44], Medusa [45], Borealis [46]). These systems are typically
geared towards supporting continuous real-time queries on
large flows of data by applying data filters (chosen from
a library of database-like primitives) at various points in
the streams. They achieve fault tolerance through replication
(potentially with configurable guarantees and trade-offs [47]).
Unlike our platform, these systems typically target high-
bandwidth, static environments with dedicated infrastructure.
Like our work, Borealis supports dynamic modification of its
data filters, but it does so by changing the filter’s behaviors
and parameters, rather than allowing graph reconfiguration.

While this paper is focused on our platform, our typical
applications are also slightly reminiscent of stream based
overlay networks (e.g., [48], [49], [50], along with many
projects exploring stream processing engines), especially for
media streams [51]. Our platform itself does not address the
underlying routing path optimizations [52] for wide-scale data
dissemination that these projects undertake, but applications
using our platform can potentially apply many of these tech-
niques.

Finally, while our system does not yet provide any mecha-
nisms for measuring network bandwidth as a potential heuris-
tic for adaptivity, several projects, such as Network-Sensitive
Service Discovery [53] and Remos [54], focus on measure-
ment and related techniques. Future work includes integrating
these ideas with our platform.

IV. APPLICATIONS

A. JustPlay

Our platform provides the foundation for JustPlay [55], a
home automation application. JustPlay relieves the user of the
task of configuring (and re-configuring) their home electronics.
In a typical example, a user may say “Play jazz” to JustPlay,

Fig. 4. Hub topologies chosen by the Hub component based on periodic
network measurements.

and the system responds by searching for ways to play jazz
given resources in the environment.

Architecturally, JustPlay is divided into two parts: a Goals
Planner [7], which provides an extensible mechanism for man-
aging system run-time decisions governed by user requests,
and a set of components representing the devices and software
available in the user’s home. In response to user requests, the
Planner asserts or revokes high-level Goals and searches the
environment for Techniques that satisfy the user’s Goals.

Each Technique provides a single part of a dynamically-
generated constructor logic, typically a recipe for finding
and connecting together resources found in the environment.
Techniques may depend on other Techniques, so that one
implementation of the PlayMusic Goal might use one
component, while another might compose a large graph of
components. For example, in Figure 3 the Technique finds and
combines an audio source (e.g., an MP3 file server), an audio
filter itself composed of several components, and speaker as
one “PlayMusic” component. The Planner then passes the
“PlayMusic” component to the voice shell for user interaction.

The Planner uses our platform’s discovery, health moni-
toring, and object tracking mechanisms to keep track of the
environment: when a component used by a Technique dies
or when a better Technique becomes available, the Planner
selects a replacement Technique and employs our runtime to
hotswap in the necessary components for that new Technique.

Finally, JustPlay uses a variety of Pebble wrappers for off-
the-shelf media streaming servers and players, such as Apple’s
Darwin Streaming Server (DSS) [56], the Apache Web Server,
and VLC [57]. DSS streams data using RTP, while Apache
streams over HTTP. Such wrappers enable the application
Planner to discover, monitor, interconnect, and hotswap off-
the-shelf software components with the constructor logic,
hiding the complexities of the underlying transport protocols.

B. Hand-built Libraries

Overlay network data hubs that broadcast data streams
are generally useful constructs within pervasive computing
environments. For instance, Project Aura’s IdeaLink [37], a
collaborative blackboard application, and Gaia’s ConChat [58],
a contextual chat program, are examples of projects that rely
on data hubs. As such, one useful building block in our
applications is the Hub component.

Listing 1 illustrates constructor logic that first finds a
data communication Hub module; as appropriate ChatNode
Pebbles come online, the constructor logic adds them to the
hub, enabling each node to broadcast messages to others.

from o2s.framework import ∗
class DataHubApp(ConstructorFramework):

def initialize (app):
Subscribe to be notified when ChatNode Pebbles come online
Subscribe(type = ”ChatNode”)
Find a hub component and instantiate it with the set of
participating nodes
app.add(hub = Component(Find(factory = ”Hub”)))

def message handler(app, event):
if event.type == NOTIFY:

app.hub.add nodes(event.components)

Listing 1. Constructor logic for instantiating a data-hub between several
distributed nodes.

This application demonstrates the adaptivity possible with
our platform: the Hub component itself can periodically per-
form a variety of network measurements among the partici-
pating nodes to determine the best communication topology
(Figure 4). For instance, if the nodes are all relatively near
the Hub, it may elect to implement a star topology in which
all nodes communicate directly with the Hub. Alternatively, if
the nodes are all relatively local to each other but far from
the Hub component, the Hub may instead simply connect the
nodes in a complete graph (or use network broadcast) to reduce
communication overhead. The application designer need not
worry about the particular (or best) topology, deferring the
decision instead to the Hub component. The constructor logic
remains relatively simple, while the Hub component itself
encapsulates the implementation strategies.

We constructed a simple conferencing application using
the adaptive Hub component, in which users engage in a
conversation with other users. The layered approach of sep-
arating constructor logic from implementation enables the
chat application to find and use the optimal set of devices
available to each user in their respective environments during
run-time. The application also maintains or upgrades active
conversations when A/V devices fail or come into existence.

V. IMPLEMENTATION

Our platform is fully implemented in Python 2.5+,1 along
with prototype implementations in C and Java. It runs on
nearly all major operating systems, as Python and Java are
widely implemented; it has been tested on desktop machines
running GNU/Linux, Windows, Mac OS X, as well as Familiar
Linux [59] on iPAQ handheld computers and GNU/Linux on
gumstix [60] embedded processors. Below we highlight certain
implementation details:

A. NPOP: Network Portable Object Packaging

The NPOP framework provides a familiar RPC interface to
object methods and state, and enables object references to be
transparently passed among hosts. Each call on an NPOP takes
arguments and returns values from a restricted set of types,
including language-generic scalars, aggregates, and NPOP
references.

1Source code and examples are available at http://pervasive.csail.mit.edu/.

In contrast to many traditional RPC packages such as Java
RMI and CORBA where developers must generate client and
server stubs for code modules—and potentially maintain a
centralized registry containing such stubs—the NPOP ab-
straction uses a combination of dynamic stub generation and
object reference tracking to hide both object locations and
the distinction between local and remote objects. Additionally,
the NPOP system ensures that the identity of a given NPOP
instance is unique within an address space, allowing simple
pointer comparisons to test for remote object identity. In
our NPOP implementation, we employ XML-RPC [61] as
the underlying RPC machinery, chosen for its lightweight
implementation and transparency.

It is often necessary for NPOP objects to allocate resources
on behalf of remote clients, as well as deallocate those re-
sources when clients exit or become otherwise inoperable. To
support garbage collection, the framework can optionally track
the locations of an NPOP object’s remote pointers and provide
hooks for developers to handle resource (de-)allocation.

B. Pebbles and Composition

Pebbles are particularly well-suited for wrapping existing
off-the-shelf libraries or programs. Developers create Pebbles
by subclassing the Pebble class and overriding the relevant
methods. Developers also specify the key-value pairs that a
Pebble advertises on the network to indicate its presence and
become discoverable. The runtime manages the life-cycle of
Pebbles, providing hooks for developers to dictate how a
given Pebble instantiates and initializes, runs (and optionally
pauses), and shuts down.

Composites, hierarchical compositions of components, serve
as an intermediary manager between their constituent com-
ponents and the application specific logic (or a parent Com-
posite). Composition and component hierarchy does not im-
pose additional overhead in the runtime communication links
between components. Once the constructor logic builds the
component graph, the platform runtime computes and forms
direct links between Pebbles, much like overlay networks.

C. Connectors

Typed data ports named Connectors provide components
with standard input and output data streams: they serve as
an interface to communicate with the outside world as well
as an access point to the services offered by a component.
Distributed components communicate by forming persistent
Connections between pairs of connectors. Each connection
is a typed, unidirectional communication path for typed data
within an assembled application. A raw data byte stream that is
emitted from an output connector is sent across the connection
to the corresponding input connector, with support for side-
band data. Data-flow on connections bypass all synchronous
communication mechanisms used by the constructor logic to
instantiate and maintain component networks; hence, connec-
tions do not incur the overhead of standard, synchronous RPC.
Connectors are implemented as real sockets on Pebbles, but

on Composites, connectors simply point to the next-hop socket
endpoint.

Currently, socket-based connectors may use TCP, UDP, or
RTP as the underlying transport protocol, but connectors can
also wrap arbitrary off-the-shelf protocols. For instance, a pop-
ular way to watch remote media is to stream them over HTTP.
With our platform, Pebbles can wrap the Apache web server
and the VLC media player into discoverable components,
and connectors can wrap Apache’s and VLC’s standard TCP
sockets. One resulting benefit is that the construction logic can
hotswap connections between Apache, VLC, or intermediate
components.

D. Hotswapping Overview

Hotswapping provides a means to replace one running
component with another, thereby facilitating service upgrade
and fail-over. This section briefly discusses how the platform
runtime hotswaps components without imposing any loss (or
re-ordering) in the data streams between hotswapped compo-
nents. The runtime can only seamlessly hotswap components if
the component’s designer anticipates and enables hotswappa-
bility by providing procedures to serialize component state.
Otherwise, the constructor logic can hotswap via manual
disconnection and reconnection of connectors, without data
buffering.

As outlined in IBM’s K42 project [62], the three main
challenges to replacing a connected component during runtime
are: 1) determining when to safely collect component state,
2) collecting and transferring that state, and 3) updating all
external references to the old component. We summarize how
we address these concerns:

• A Composite can hotswap any of its constituent parts with
a pin-compatible component: the system enforces that
the number and type of input/output connectors match
between the hotswapped components. While in principle
the system can perform static or runtime checking to
also ensure a compatible API between the hotswapped
components, our current implementation leaves this re-
sponsibility to the planning process.

• When a Composite hotswaps a constituent component,
the Composite first instantiates the new (replacement)
component. All new RPC calls to the old component
are then blocked; in addition, all in-bound connections
to the old component are atomically paused, so that the
old component no longer receives any new data on its
input connectors. Connector data now destined to the old
component is automatically buffered on the sender side.
The old component subsequently drains its in-flight data;
once complete, the system assumes that the component
is in a quiescent state, safe for hotswapping.

• The platform provides hooks in which developers im-
plement state capture and restoration. For Composites,
developers subclass the base Composite class and
specify how to synthesize a state representation from the
state of constituent components.

Fig. 5. Hotswapping Component B for Component D.

• We use the network object tracking mechanism to de-
termine which components have references to the old
hotswapped component and update those references.

E. Hotswapping Details

To facilitate hotswapping, every connector can internally
sustain two concurrent connections—one active and one pas-
sive—but may only send data on the active connection. For
input connectors, data received on the passive connection
is buffered; only data received on the active connection is
delivered to the component for processing. A connector can
switch (“flip”) the active and passive status of connections, in
which the passive connection is promoted to active, and the
(former) active connection disconnects and becomes passive.

Figure 5 illustrates hotswapping component B with D,
without data loss or reordering. The platform performs the
following procedures, orchestrated by the parent Composite:

1) Instantiate D.
2) Connect D’s output connectors to C’s (passive) input

connectors.
3) Connect A’s (passive) output connectors to D’s input

connectors. Note that data continues to flow through A’s
active connectors to B.

4) Atomically pause all of A’s output connectors (and
buffer any new data destined to B).

5) Inject a DRAIN token through B, which instructs B to
drain its current inflight data. When the DRAIN token
reaches C, C automatically flips its active and passive
connectors.

6) Call getstate() on B, which blocks until a frozen
state representation is available.

7) Call start() on D with B’s frozen state as a param-
eter.

8) Flip A’s active and passive connectors, and unpause,
flushing all buffered data at A’s output to D.

9) Reclaim B.
1) Discussion: The hotswapping procedure outlined above

involves a mix of both RPC-based control layer mechanism,
as well as connector level mechanism (e.g., DRAIN token).
As such, special care is necessary because these two differ-
ent mechanisms are not synchronized with each other. For
example, because the DRAIN token is not synchronized with
the activation of the new component (e.g., calling start()
on D), as they respectively use a connector- and RPC-based
mechanism, we buffer data from the new component if sent
on passive connections. In other words, if C receives new data

(from D) before B has fully drained (i.e., before C receives
the relevant DRAIN token), C must buffer all such data until
B has drained to ensure proper ordering.

We stamp DRAIN tokens with a nonce associated to a
unique instance of a hotswapping procedure. When the orches-
trating parent Composite forms a connection between D and
C’s passive connectors, the parent Composite also specifies the
hotswapping instance nonce. This allows C to disambiguate
between DRAIN tokens, in the case when there are multiple,
concurrent hotswapping procedures.

There are several possible scenarios that govern the behavior
of a Pebble (since only Pebbles have real connectors) when it
receives a DRAIN token:

• If the Pebble has no passive connections, the Pebble is
being hotswapped (e.g., B in Figure 5). It flushes and
drains any inflight data, and forwards the DRAIN token
onto all of its output connections. Doing so ensures that
the DRAIN token will reach the output of the parent
Composite, even if cycles exist within the network.

• Otherwise, if the Pebble’s hotswapping instance nonce
matches the token’s stamp, the token signifies that the
hotswapped component is now drained. The Pebble flips
its passive and active connectors and discards the token.
In practice, we set a timeout after which the Pebble
automatically flips the passive and active connectors, even
if no DRAIN token is received. This guards against the
case in which a DRAIN token is lost due to component
failure during the hotswapping operation.

2) Quiescence: In order to ensure and maintain quiescence
during a hotswapping operation, we first ensure that there are
no in-flight RPC calls to the old component and block new
calls. After injecting the DRAIN token, we call getstate()
on the old component, which blocks until it is safe to capture
and return the component’s state.

In the case of Pebbles, invoking getstate() will block
until the Pebble receives a DRAIN token on one of its input
connector. Once the Pebble has flushed its inflight data,
it becomes safe to capture state. On Composites, calling
getstate() will recursively call getstate() on all its
constituent components. The Composite will wait until all
getstate() calls on constituent components return, thereby
collecting state for all of these components. The developer
can specify how the Composite then synthesizes a new state
encoding based on the collective constituent state.

3) Optimization: Many components often do not require
state transfer; hence, components can elect to return imme-
diately from getstate() if state transfer is unnecessary,
thereby allowing instant activation of the replacement compo-
nent to minimize switch-over delay. However, there is now a
race between data flowing through the new component and the
DRAIN token in the old component, so it is important to buffer
data (e.g., at C) until the DRAIN token passes completely
through the old component.

 0

 100

 200

 300

 400

 500

 0 5000 10000 15000 20000 25000 30000

Ti
m

e
(m

ill
is

ec
on

ds
)

Segment Size (bytes)

Time To Send 1MB vs Segment Sizes

C TCP Sockets
Connectors/TCP

Fig. 6. Time to send a 1MB file between two
hosts using TCP connectors.

 0

 5

 10

 15

 20

 25

 30

 35

 10 20 30 40 50 60 70 80 90 100

Ti
m

e
(m

ill
is

ec
on

ds
)

Number of Components

Time To Transfer Data Through A Component Graph

Linear Composition
Nested Composition

Fig. 7. Time to send a datum through a running
graph; graph composition structure (linear vs
recursive) does not impose runtime overhead.

 40

 45

 50

 55

 60

 65

 70

 0 1 2 3 4 5 6

Fr
am

es
 in

 B
uf

fe
r

Seconds

Playback Buffer During Composite Hotswapping

Hotswap Start

1-node filter composite
5-node filter composite

10-node filter composite
15-node filter composite
20-node filter composite
25-node filter composite

Fig. 8. Video frames (H.264, 10Mbps) in
playback buffer as a 1–25-node Composite is
hotswapped.

VI. MICRO-BENCHMARKS

Since the run-time performance of applications is dictated
by the components and their connections, we focus the
following micro-benchmarks on the components layer. The
benchmarks below suggest that application networks suffer
negligible additional overhead with our platform. The data
streams test measures networking throughput between two
hosts on the same 100 Mbit Ethernet subnet: a Pentium
4/512MB RAM and a Pentium 4HT/1GB RAM, both running
Linux 2.6. For hotswapping measurements, we add: a Pow-
erPC G4 Macintosh, 1GB RAM; an Intel Core Duo Macintosh,
1GB RAM; and an Intel Quad Core Macintosh, 3GB RAM.

a) Data Streams: Figure 6 plots the result of sending
a 1MB file (filled with random bytes) between two hosts
in various segment increments to simulate the stream-like
process by which these modules would continually receive,
process, and forward data to other modules. The objective
of the benchmark is to compare the overhead introduced by
connectors (using TCP as the underlying transport protocol).
For each segment size, points are the average time of 50 runs.

As the data segment size increases, the amount of time
attributed to platform overhead decreases. Our current im-
plementation introduces some Python overhead compared to
standard C sockets, but this cost is not architecture-imposed
and reducible by implementing the connector infrastructure
in a C module. However, because we typically send media
segments in the range of 4-16K bytes, we find the Python
implementation acceptable and on par with C sockets.

b) Composition: Figure 7 plots the time to send data
through a Composite of varying structure and size. The first
structure is a simple linear chain of N Pebbles. The other
is one whose constituents include a Pebble connected to a

Fig. 9. Hotswapping performance measured as Filter A is hotswapped for
Filter B.

Composite with N − 1 components. Constituents are also
structured similarly, achieving a deeply recursive hierarchy.
All components run on the same host. In both structures, time
grows linearly with the number of components. Performance is
independent of structure, verifying that construction hierarchy
incurs no additional performance penalty for data flow.

c) Hotswapping: To measure the latency that hotswap-
ping imposes on a typical application, we stream an MPEG-4
movie compressed with H.264 at 10 Mbps (a mid-range rate
for compressed HD streams) from an HTTP server Pebble to
a media player Pebble (Figure 9). Spliced within that path
is a Composite implementing a stateless identity filter, which
faithfully transmits data untouched, and a metering component
which simulates a 2 second (60 frame) playback buffer while
measuring its fluctuations. Each component runs on a unique
host on the same subnet, and all underlying TCP sockets have
TCP_NODELAY enabled to prevent packet batching.

In Figure 8, we measure the effects of hotswapping the
filter Composite, as it comprises up to 25 linearly connected
Pebbles. Prior to hotswapping, we allow the playback buffer
to fill to capacity before commencing playback. The size of
the Composite dictates the amount of time necessary to fill
the buffer. Once filled, the playback buffer is depleted at the
playback rate. At 4s after the media source begins streaming,
we hotswap the filter Composite A for an identically structured
Composite B. The hotswapping mechanism flushes the data
within A (which will all enqueue in the playback buffer);
the hotswapping latency of interest, measured at the metering
component, is the time between when A is fully flushed and
the arrival of the first video packet through B. As long as this
time is shorter than the time needed to completely deplete the
playback buffer, there are no playback artifacts. We observe
that the playback buffer depletes by no more than 2 frames
throughout the hotswapping process.

VII. CONCLUSION

Our platform provides a flexible and adaptive target for both
automatic code generators and hand prototyping of pervasive
applications. Its design is based on an ADL-inspired block-
diagram abstraction used to separate a layer of simple con-
structor code from a network of interconnected components.

Our approach relies on the practical assumption of differing
architectural priorities for these two layers: that the constructor
code is not performance critical and should be easy to produce
and modify, while the interconnected network of components
cannot suffer significant performance overhead. The platform
simplifies design of the constructor code by providing a simple
and single-threaded context for its operation—but does not
place restrictions on what kinds of architectures low-level
components use to achieve their performance targets.

ACKNOWLEDGEMENTS

This work is sponsored by the T-Party Project, a joint
research program between MIT and Quanta Computer Inc.,
Taiwan.

REFERENCES

[1] Clarke, M., Blair, G.S., Coulson, G., Parlavantzas, N.: An efficient
component model for the construction of adaptive middleware. In:
Middleware. (2001) 160–178

[2] Bruneton, E., Coupaye, T., Stefani, J.B.: Recursive and dynamic
software composition with sharing. In: ECOOP. (2002)

[3] Serrano-Alvarado, P., Rouvoy, R., Merle, P.: Self-adaptive component-
based transaction commit management. In: ARM, New York, NY, USA,
ACM (2005)

[4] Bidan, C.: Aster: A framework for sound customization of distributed
runtime systems. In: ICDCS. (1996) 586–593

[5] Allen, R., Douence, R., Garlan, D.: Specifying and Analyzing Dynamic
Software Architectures. In: FASE. (1998)

[6] Blair, G.S., Coulson, G., Robin, P., Papathomas, M.: An architecture for
next generation. In: Middleware, UK, Springer-Verlag (1998) 15–18

[7] Mazzola Paluska, J., Pham, H., Saif, U., Chau, G., Terman, C., Ward, S.:
Structured decomposition of adaptive applications. In: PerCom. (2008)

[8] Oreizy, P., Gorlick, M., Taylor, R., Heimbigner, D., Johnson, G.,
Medvidovic, N., Quilici, A., Rosenblum, D., Wolf, A.: An architecture-
based approach to self-adaptive software. IEEE Intelligent Systems 14(3)
(May 1999) 54–62

[9] Cheng, S.W., Garlan, D., Schmerl, B.R., Sousa, J.P., Spitznagel, B.,
Steenkiste, P., Hu, N.: Software architecture-based adaptation for
pervasive systems. In: ARCS. (2002) 67–82

[10] Garlan, D., Monroe, R.T., Wile, D.: Acme: architectural description of
component-based systems. (2000) 47–67

[11] Taentzer, G., Goedicke, M., Meyer, T.: Dynamic accommodation of
change: Automated architecture configuration of distributed systems. In:
ASE. (1999) 287–290

[12] Medvidovic, N., Taylor, R.N.: A classification and comparison frame-
work for software architecture description languages. IEEE Trans. Softw.
Eng. 26(1) (2000) 70–93

[13] Garlan, D., Cheng, S.W., Huang, A.C., Schmerl, B., Steenkiste, P.:
Rainbow: architecture-based self-adaptation with reusable infrastructure.
Computer 37(10) (Oct. 2004) 46–54

[14] IETF: Multicast DNS. Internet Draft, Cheshire & Krochmal (August
2006)

[15] IETF: DNS-based service discovery. Internet Draft, Cheshire &
Krochmal (August 2006)

[16] Becker, C., Schiele, G., Gubbels, H., Rothermel, K.: BASE - A Micro-
broker-based Middleware For Pervasive Computing. In: PerCom. (2003)

[17] Sun Microsystems: Jini component system. http://www.jini.org (2003)
[18] Object Management Group: The Common Object Request Broker:

Architecture and Specification. 2.5 edn. (September 2001)
[19] OMG Corba CCM. http://www.omg.org/ technology/documents/formal/

components.htm
[20] Sun Microsystems: Enterprise JavaBeans. http://java.sun.com/products/

ejb/ (2003)
[21] IETF: Service location protocol, version 2. RFC 2608 (June 1999)
[22] Microsoft: .NET Framework. http://msdn.microsoft.com/netframework/
[23] Taylor, R.N., Medvidovic, N., Anderson, K.M., Jr., E.J.W., Robbins,

J.E., Nies, K.A., Oreizy, P., Dubrow, D.L.: A component- and message-
based architectural style for GUI software. Software Engineering 22(6)
(1996) 390–406

[24] Gorlick, M., Razouk, R.: Using weaves for software construction and
analysis. In: International Conference on Software Engineering. (1991)

[25] Roman, M., Islam, N.: Dynamically programmable and reconfigurable
middleware services. In: Middleware. (2004)

[26] Blair, G.S., Costa, F.M., Coulson, G., Duran, H.A., Parlavantzas, N.,
Delpiano, F., Dumant, B., Horn, F., Stefani, J.B.: The design of a
resource-aware reflective middleware architecture. In: Reflection. (1999)

[27] David, P.C., Ledoux, T.: An aspect-oriented approach for developing
self-adaptive fractal components. In: International Symposium on
Software Composition. (2006)

[28] Pichler, R., Mezini, M.: On aspectualizing component models. Software
Practice and Experience 33 (2003) 2003

[29] Georgiadis, I., Magee, J., Kramer, J.: Self-organising software architec-
tures for distributed systems. In: WOSS. (2002)

[30] Yau, S.S., Karim, F.: An adaptive middleware for context-sensitive
communications for real-time applications in ubiquitous computing
environments. Real-Time Syst. 26(1) (2004) 29–61

[31] Batista, T., Joolia, A., Coulson, G.: Managing dynamic reconfiguration
in component-based systems. In: EWSA 2005. (2005) 1–17

[32] Kon, F., Román, M., Liu, P., Mao, J., Yamane, T., Magalhães, L.C.,
Campbell, R.H.: Monitoring, security, and dynamic configuration with
the dynamictao reflective orb. In: Middleware. (April 2000)

[33] Gay, D., Levis, P., von Behren, R., Welsh, M., Brewer, E., Culler, D.:
The nesc language: A holistic approach to networked embedded systems.
In: PLDI. (2003) 1–11

[34] Reid, A., Flatt, M., Stoller, L., Lepreau, J., Eide, E.: Knit: component
composition for systems software. In: OSDI. (2000)

[35] Cerqueira, R., Cassino, C., Ierusalimschy, R.: Dynamic component
gluing across different componentware systems. In: DOA. (1999)

[36] Chandrasekaran, S., Madden, S., Ionescu, M.: Ninja paths: An architec-
ture for composing services over wide area networks. Technical report,
UC Berkeley (2000)

[37] Garlan, D., Siewiorek, D.P., Smailagic, A., Steenkiste, P.: Project
Aura: Toward Distraction-Free Pervasive Computing. IEEE Pervasive
Computing (April-June 2002) 22–31

[38] Roman, M., Hess, C., Cerqueria, R., Ranganathan, A., Campbell, R.H.,
Nahrstedt, K.: A middleware infrastructure for active spaces. IEEE
Pervasive Computing (October-December 2002) 74–83

[39] Coen, M., Phillips, B., Warshawsky, N., Weisman, L., Peters, S., Finin,
P.: Meeting the computational needs of intelligent environments: The
metaglue system. In: Proceedings of MANSE. (1999)

[40] Kumar, M., Shirazi, B.A., Das, S.K., Sung, B.Y., Levine, D., Singhal,
M.: Pico: A middleware framework for pervasive computing. IEEE
Pervasive Computing 02(3) (2003) 72–79

[41] Becker, C., Handte, M., Schiele, G., Rothermel, K.: PCOM - A
Component System for Pervasive Computing. In: PerCom. (2004)

[42] Johanson, B., Fox, A.: The event heap: A coordination infrastructure
for interactive workspaces. In: WMCSA. (2002)

[43] Edwards, W., Newman, M., Sedivy, J., Smith, T., Balfanz, D., Smetters,
D., Wong, H., Izadi, S.: Using speakeasy for ad hoc peer-to-peer
collaboration. In: CSCW. (2002)

[44] Abadi, D.J., Carney, D., Cetintemel, U., Cherniack, M., Convey, C., Lee,
S., Stonebraker, M., Tatbul, N., Zdonik, S.B.: Aurora: A new model and
architecture for data stream management. VLDB, 12(2) (2003)

[45] Zdonik, S.B., Stonebraker, M., Cherniack, M., Cetintemel, U., Balazin-
ska, M., Balakrishnan, H.: The Aurora and Medusa Projects. IEEE Data
Eng. Bull. 26 (2003) 3–10

[46] Abadi, D.J., Ahmad, Y., Balazinska, M., Cetintemel, U., Cherniack, M.,
Hwang, J.H., Lindner, W., Maskey, A.S., Rasin, A., Ryvkina, E., Tatbul,
N., Xing, Y., Zdonik, S.B.: The design of the borealis stream processing
engine. In: CIDR. (2005)

[47] Balazinska, M., Balakrishnan, H., Madden, S., Stonebraker, M.: Fault-
Tolerance in the Borealis Distributed Stream Processing System. In:
SIGMOD. (June 2005)

[48] Andersen, D., Balakrishnan, H., Kaashoek, F., Morris, R.: Resilient
overlay networks. In: SOSP. (2001)

[49] Cherniack, M., Balakrishnan, H., Balazinska, M., Carney, D., etintemel,
U., Xing, Y., Zdonik, S.: Scalable distributed stream processing. In:
CIDR. (2003)

[50] Huebsch, R., Hellerstein, J.M., Boon, N.L., Loo, T., Shenker, S., Stoica,
I.: Querying the internet with pier. In: VLDB. (September 2003)

[51] Zhang, X., Liu, J., Li, B., Yum, Y.S.P.: CoolStreaming/DONet: a
data-driven overlay network for peer-to-peer live media streaming. In:
INFOCOM. (2005)

[52] Pietzuch, P., Shneidman, J., Roussopoulos, M., Seltzer, M., Welsh, M.:
Path optimization in stream-based overlay networks. Technical Report
TR-26-04, Harvard (2004)

[53] Huang, A.C., Steenkiste, P.: Network-sensitive service discovery. In:
USITS. (2003)

[54] Dinda, P.A.: Design, implementation, and performance of an extensible
toolkit for resource prediction in distributed systems. IEEE Transactions
on Parallel and Distributed Systems 17(2) (2006) 160–173

[55] Mazzola Paluska, J., Pham, H., Saif, U., is Terman, C., Ward, S.:
Reducing configuration overhead with goal-oriented programming. In:
PerCom 2006: Works in Progress. (March 2006)

[56] Apple, Inc.: Darwin Streaming Server. http://developer.apple.com/
opensource/server/streaming/

[57] VideoLan Player (VLC). http://www.videolan.org/
[58] Ranganathan, A., Campbell, R.H., Ravi, A., Mahajan, A.: Conchat: A

context-aware chat program. IEEE Pervasive Computing 1(3) (2002)
[59] The Familiar Project. http://familiar.handhelds.org/
[60] Gumstix Inc. http://www.gumstix.com/
[61] XML-RPC Specification. http://www.xmlrpc.com/spec
[62] Hui, K., Appavoo, J., Wisniewski, R., Auslander, M., Edelsohn, D.,

Gamsa, B., Krieger, O., Rosenburg, B., Stumm, M.: Supporting hot-
swappable components for system software. In: HotOS. (2001)

