
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

Public Review for
Poor Man’s Broadband:

Peer-to-Peer Dialup Networking
Umar Saif, Ahsan Latif Chudhary, Shakeel Butt,

& Nabeel Farooq Butt

I always enjoy the idea of doing more with less and this paper highlights such concept very well. In cer-
tain countries outside Internet connectivity is at a premium, and thinking of smart techniques to use it
properly is very welcome. As an example, this paper highlights how in countries such as Pakistan it is not
so much the “last mile” that is the problem, which can easily provide close to 40 Kbps, but the Internet
connection to the outside world, which is limited by ISPs to 10-20 Kbps for each dialup user.

To go around those limitations, the paper presents a P2P dialup architecture for accelerated “Internet
access” in developing countries. One can think of such architecture as one that multiplexes scarce and
expensive international Internet bandwidth over higher bandwidth p2p dialup connections within the
country, building a DialUp BitTorrent system. It is nice to see how peer-to-peer technologies apply to a
much wider area of networking than simple illegal file sharing. The idea is that peers offer their resources
for others, but in the case of Dittorrent, the resource is not only the downloaded blocks, but also the
modem (and thus the connectivity) of the node.

The paper presents an interesting and well-motivated design for a system that seems to solve a real prob-
lem. There are several non-trivial innovations that are necessary to adapt BitTorrent to a very different use
case. These have been described and evaluated in the paper reasonably well. The paper is missing some
important system details, e.g. the expected number of peer nodes and the degree to which nodes are like-
ly to want to download the same file. Also, if the user population is very scarce or diverse, then, this
approach may not make a lot of sense. Still, the overall principle of combining caching with aggregating
multiple local connections is of interest and will likely come back as the bottleneck moves from the edge
back into the network, even in more developed countries...

Public review written by
Pablo Rodriguez

Telefonica

a c m s i g c o m m

ACM SIGCOMM Computer Communication Review 5 Volume 37, Number 5, October 2007

Poor Man’s Broadband: Peer-to-Peer Dialup Networking

Umar Saif
LUMS, Computer Science

Department, Pakistan
umar@lums.edu.pk

Ahsan Latif Chudhary
LUMS, Computer Science

Department, Pakistan
alatif@lums.edu.pk

Shakeel Butt
LUMS, Computer Science

Department, Pakistan
shakeel@lums.edu.pk

Nabeel Farooq Butt
LUMS, Computer Science

Department, Pakistan
nabeelbutt@lums.edu.pk

ABSTRACT
In this paper we present a peer-to-peer dialup architecture for
accelerated “Internet access” in the developing world. Our
proposed architecture provides a mechanism for multiplexing the
scarce and expensive international Internet bandwidth over higher
bandwidth p2p dialup connections within a developing country.
Our system combines a number of architectural components, such
as incentive-driven p2p data transfer, intelligent connection
interleaving and content-prefetching. This paper presents a
detailed design, implementation and evaluation of our dialup p2p
data transfer architecture inspired by Bittorrent.

Categories and Subject Descriptors
C.2.1 [Communication Networks]: Network Architecture and
Design; C.4 [Performance of Systems]: Reliability, Availability,
and Serviceability

General Terms
Design, Experimentation, Performance.

Keywords
Developing World ICT, Bandwidth, Peer-to-Peer, Dialup,
Bittorrent

1. INTRODUCTION
The “digital divide” between the developed and developing world
is underscored by a stark discrepancy in international Internet
bandwidth. Developing countries often have to pay the full cost
of a link to a hub in a developed country, making the cost of
broadband Internet connections prohibitively expensive for
individual users. For instance, more than 40 countries have less
than 10Mbps of international Internet bandwidth, whereas in
Belgium, a 9Mbps ADSL high-speed Internet package is
available for just USD 80 a month [1]. The cost of a 2 Mbps link
in Pakistan is close to USD 4000/month, compared to a 2 Mbps
ADSL link in UK for just 60 USD/month. As a result, Internet
access in the developing world is primarily over dialup
connections, often using pre-paid “scratch cards”.

Characterized like this, the scarcity of available bandwidth in the
developing world is not a “last-mile” problem. A 56Kbps modem
can typically achieve an average throughput of close to 40Kbps,
more than twice the bandwidth available over a typical (10-
20Kbps) dialup Internet connection in Pakistan. Given the high
cost of international Internet circuits, local ISP idiosyncrasies,
and the economics and politics of routing on the Internet, end-
users in the developing world are forced to access the Internet at
a fraction of the speed possible over a dialup connection.

Unfortunately, the paucity of Internet bandwidth severely limits
the utility of Internet in the developing world. In general, Internet

is almost never used for accessing or transferring data larger than
a few hundred kilobytes. This includes software downloads and
online software updates, large email attachments and sharing and
download of large files. On the other hand, such bulk data
transfer comprises 70% of the overall Internet traffic [2].

To illustrate the limited role of Internet in the developing world,
consider a simple scenario where two users in Pakistan wish to
exchange a 3.5MB PDF file as an email attachment. On a slow
dialup connection of, say 16kb/sec, it would take close to an hour
to transfer the file (30 minutes each for uploading and
downloading the email attachment). Accounting for possible
disconnections over such long dialup connections, the effective
time for file transfer may be prohibitively long for most people to
even consider the Internet as a medium for exchanging such large
content.

Ironically, without the Internet, if the users established a direct
peer-to-peer dialup connection between the two computers, they
can exchange the file in less than 18 minutes (over a v.90 peer-to-
peer dialup connection at 32kb/sec) – a performance
improvement of more than a factor of 3 -- at a bandwidth
equivalent to a typical broadband connection in Pakistan
(~35Kb/sec).

However, the contemporary view of a dialup is limited to a “last-
mile” connection between the end-host and the Internet Service
Provider (ISP) to access the Internet. In this paper, we propose a
departure from this view of dialup to address the bandwidth
limitations in the developing world. The key idea of our proposal
is simple: instead of using dialup solely as a mechanism to
connect to the Internet, at a fraction of bandwidth afforded by the
modem, we propose to use point-to-point dialup connections, at
modem-speed, to bypass the Internet when transferring large
content between end-hosts. This is achieved by using a network
routing layer, dubbed dialup-underlay, which monitors end-host
bandwidth and interleaves the (low-bandwidth) ISP dialup
connection with modem-speed peer-to-peer dialup connections to
download large content on the Internet. Figure 1 sketches the
proposed ISP-p2p interleaving architecture.

Perhaps radical, and closer to pre-internet technologies (such as
FidoNet) than current-day broadband networking technologies,
we believe that such an approach has practical appeal for the
“other four billion” users of the Internet. Furthermore, while this
paper is focused on using POTS to-modem dialup connections to
circumvent extremely low bandwidth Internet connections in the
developing world, the crux of our proposal has generic appeal in
the developing world. Countries like Pakistan have seen a
phenomenal growth in Telecom, resulting in cheaper and better
communication infrastructure within the country -- including
deployment of high-bandwidth Wireless Local Loop (WLL) and

ACM SIGCOMM Computer Communication Review 7 Volume 37, Number 5, October 2007

WiMAX -- while Internet connectivity and bandwidth remains
scarce. It is worth reiterating that the extremely low Internet
bandwidth received by end-users in countries like Pakistan is not
a “last-mile problem”. In our experiments, we routinely achieved
a peer-to-peer dialup bandwidth of 32kb/sec (symmetric), but the
bandwidth allocated by various dialup ISPs rarely exceeded
15kb/sec (typically between 8-15kb/sec). Our experiments,
conducted with ISPs in the second largest metropolitan in
Pakistan, repeatedly highlighted the fact that end-user bandwidth
lower than 2KB/sec is typically not due to poor phone lines,
rather it is because of the overloaded upstream Internet
connection of the ISP.

Our proposed architecture, at an abstract level, provides a
mechanism for multiplexing the scarce and expensive
international Internet bandwidth over higher bandwidth peer-to-
peer connections within a developing country.

The point-to-point nature of our architecture is reminiscent of
routing systems from the pre-Internet days, such as FidoNet,
USENET (historically dubbed poor man’s ARPANET) and
UUCP. However, our motivation, design goals and
implementation strategy is very different from these systems.
Unlike pre-Internet systems that relied solely on dialup
connections for moving content between computers, our goal is
to accelerate access to large content on Internet by utilizing a
dialup connection at the maximum bandwidth supported by the
modem. In our model, content still “resides” on the Internet, but
may be downloaded using a p2p dialup connection to reduce
download time.

Key to the practicality of our approach is a realization that it is
not always possible or desirable to make a direct dialup
connection between the “client” and “server”. For instance, a
Web-server may not be accessible over dialup; the server may not
support a dial-in facility or may be located in a different country,
requiring an expensive international phone call to establish a
dialup connection. Even when the server is accessible over

dialup, it would have a limited number of modems and a finite
capacity for handling dial-in connections.

Our system derives its practicality from combining the p2p
dialup-underlay with a data transfer architecture that enables
dialup clients to cache and collaboratively share downloaded
content – a peer-to-peer (p2p) file-sharing systems [3] (albeit
with additional mechanism for direct p2p dialup connections).
Our p2p data transfer architecture is derived from and compatible
with the hugely popular Bittorrent peer-to-peer file-sharing
system [3]. We chose Bittorrent over other p2p file-sharing
systems like Gnutella, Kazaa, eDonkey etc. due to its download
performance and robust incentive mechanism [12, 13, 14]. We
call our system DitTorrent (Dialup Bittorrent).

DitTorrent is designed to address two limitations of dialup
Internet access in the developing world: Extremely low Internet
bandwidth (5-10kb/sec) and frequent disconnections from the
Internet. DitTorrent circumvents low-bandwidth dialup Internet
connections by using modem-speed p2p dialup connections,
while a suspend-resume download manager mitigates disruption
caused by dialup disconnections.

In addition to offering a Bittorrent-like interface for file
download, DitTorrent is also used to implement a WWW
download-accelerator. The download-accelerator is implemented
as a browser plug-in and employs the p2p data transfer layer,
when possible, to download requested content over DitTorrent
(rather than using a TCP/IP connection over the Internet between
the client and the Web-server). Moreover, since download via
DitTorrent may involve “offline” data exchange (using p2p
dialup connections), the WWW accelerator plugin uses a local
pre-fetching proxy to mitigate the disruption of online access
when interleaving ISP and p2p dialup connections. Finally, the
suspend-resume download-manager provides a common caching
and scheduling mechanism to maintain download sessions across
interleaving of ISP (Internet) and peer-to-peer dialup
connections. Figure 2 sketches the high-level architecture of our
system.

Peer-to-peer
dialup
connections

Line-speed
(32kb/s) dialup
connections

10-15kb/s
Internet dialup Internet

ISP

ISP

5-15kb/s
Internet dialup

Dialup
Underlay

Internet-dialup and Dialup-underlay
connections are interleaved to optimize
available bandwidth

Figure 1: Our system interleaves low-bandwidth Internet connections with modem-speed p2p dialup connections

ACM SIGCOMM Computer Communication Review 8 Volume 37, Number 5, October 2007

In this paper, we describe the design and implementation of our
system and present detailed analysis of data transfer over the p2p
dialup-underlay. The rest of the paper is organized as follows.
Section 2 gives an overview of the system architecture. Section 3
describes the operation of our extension to Bittorrent namely
DitTorrent. Section 4 outlines our implementation and section 5
presents related and future work.

2. SYSTEM OVERVIEW
Our system is based on a modular architecture, sketched in Figure
2. The DitTorrent module presents an interface similar to
Bittorrent and is designed to be compatible with existing
Bittorrent clients and trackers. Additionally, DitTorrent can
establish direct point-to-point dialup connections to download
content at modem-speed when such a connection can reduce the
overall download time of a requested file. The DitTorrent client
also interfaces with a Web browser plug-in to enable download of
requested data over DitTorrent; depending on the size of the
requested content and its availability on the p2p network, the Web
browser plug-in can invoke DitTorrent instead of using the slow-
speed Internet connection to download content.

Below we describe these components in detail.

2.1 Data-oriented Transfer
The internal interfacing between the Web browser and the p2p
client embodies a data-oriented architecture; a user chooses a file
he wishes to download, while the system automatically explores
alternative mechanisms to download the file in minimum possible
time [2]. To achieve this, our browser plugin recognizes .torrent
files and automatically triggers the DitTorrent client when a user
clicks on a file accessible on the DitTorrent network. The internal
interfacing between p2p file transfer and Web download enables a
model where different chunks of the same file may be
downloaded by different download mechanisms, either
sequentially or in parallel, to reduce the overall download time.

To enable multiple downloads, the common system cache
provides a simple interface, permitting different download
mechanisms, such as Bittorrent and Web browser, to create a file
handle (encoded as a unique File ID, FID) and put in different
blocks of a file that are pieced together to generate the complete
file. The FID is a (MD5) hash of the file contents, permitting both
unique identification of file contents for subsequent lookups and
verification of the completeness and integrity of the downloaded
contents. Moreover, the common system cache is implemented as
a suspend-resume session layer, which enables online (HTTP and
Bittorrent) and offline mechanisms (DitTorrent offline mode) to

download chunks of a file over interleaving ISP and p2p
connections. Different download mechanisms, such as p2p
Bittorrent and client-server HTTP connections, invoke the hole
interface of the session layer to find chunks of a file currently not
downloaded; the hole method, when invoked with an FID, returns
a pair of offsets that indicate a range of bytes in the file, or a hole,
currently not stored in the cache. Successive invocations of the
hole interface return non-overlapping file chunks not stored in the
cache; the browser plugin and DitTorrent calling the hole
interface are assigned non-overlapping chunks of a file to
download either in parallel (online mode) or sequentially (when
interleaving online and offline modes). In our current
implementation, we have fixed the hole size to be the same as a
Bittorrent block (128kB), simplifying the interoperation of the
session layer and our p2p DitTorrent client.

2.2 Interleaving Scheduler
The switchover from the Internet connection (via ISP) to a
(offline) dialup p2p is orchestrated by the interleaving-scheduler
module, with the aim to reduce the overall download time of a
requested file. It is worth highlighting that the bandwidth
improvement resulting from a transition from a slow-speed
Internet connection to a 32kb/sec p2p modem-to-modem
connection is not for free. In fact, each such transition incurs an
overhead of close to 30 seconds for negotiating the new modem
connection. Of course, each subsequent transition between two
p2p dialup connections, as well as the transition back to the
Internet connection, also incurs the same overhead of modem-
handshake. The interleaving-scheduler module, therefore, must
take into account three factors before interleaving ISP-p2p
connections: current Internet bandwidth, size of the requested file
and the dialup handshake latency. Figure 3 illustrates suitable
transition points with varying Internet bandwidth and the number
of dialup connections necessary to download a file. For smaller
files, the overhead of modem-to-modem negotiation outweighs
the time-saved in downloading the file at modem speed. With a
moderately low-bandwidth dialup Internet connection of
15kb/sec, and between 2-4 average modem connections
(disconnection and reconnection to the Internet, as well as dialup
connections between peers), interleaving of ISP-p2p typically
becomes feasible for files larger than 50kB.

2.3 Pre-fetching Proxy
Another component in the architectural diagram shown in figure 2
is a pre-fetching proxy used to mitigate the disruption to normal
WWW access when the interleaving-scheduler disconnects from
the ISP to establish a p2p dialup connection. The pre-fetching

Browser
Plug-in

Dittorrent

Suspend-Resume Session Layer
Common System Cache

Pre-fetching Proxy

Web Browser Dittorrent User Interface

put(FID, block[offset, length, Hash]) get(FID,{block})
)

.torrent file Pre-fetching
level

Bandwidth Monitor
and Interleaving

Scheduler

hole(FID)

 Figure 2: System Architectural Components

ACM SIGCOMM Computer Communication Review 9 Volume 37, Number 5, October 2007

proxy is invoked by the browser plug-in when notified by the
interleaving-scheduler module that a requested file may be
feasibly downloaded via a p2p dialup connection. The pre-
fetching proxy is invoked with a number specifying the level of
web-pages to be recursively pre-fetched by the proxy starting with
the egress links of the current webpage. The pre-fetching proxy
notifies the browser plugin when it has downloaded the requisite
webpages, triggering a switchover to the (offline) p2p dialup
connection. Subsequent accesses to webpages are served by the
pre-fetching proxy, while access to a webpage whose egress links
are not prefetched triggers a reconnection to the Internet.

2.4 DitTorrent Peer-to-Peer Client
The centerpiece of our architecture is the DitTorrent p2p client.
As mentioned earlier, our architecture derives its practicality by
enabling clients (peers) to share downloaded data, minimizing the
need for direct dialup connections between clients and servers.
Our p2p data transfer architecture is derived from and compatible
with the hugely popular Bittorrent peer-to-peer file-sharing
system [3]. The key attraction of Bittorrent for us is its practical
incentive-driven data-sharing model; instead of assuming a
volunteer-driven model like FidoNet, where users are expected to
voluntarily call one another to copy data between various nodes,
our system is based on a more practical incentive-driven tit-for-tat
data-sharing model of Bittorrent [3]. In our model, files are
divided into smaller chunks, as in Bittorrent, that are virally
replicated in the network based on opportunistic peer connections;
node A may let node B download a chunk of a file as long as node
B can offer another chunk in return that node A wishes to
download.

However, this model also raises a number of interesting
challenges. For one, download of a file in this model does not
involve a single switchover from the online Internet world to a
point-to-point dialup connection, but several shorter connections
with different peers in the same vein as Bittorrent. Therefore, with
the 30 seconds penalty of a modem-to-modem handshake, it is
important to minimize the number of connections needed to
download the entire contents of the file. Moreover, given the
point-to-point nature of the operation over the dialup-underlay,
clients must somehow discover other offline clients and establish
peer-to-peer connections to exchange chunks of a file. The point-
to-point nature of the dialup-underlay also introduces another
interesting idiosyncrasy: if two peers are connected to each other,
no other peer can connect to them. Hence, once a point-to-point
connection is established, there is no mechanism for a client to

opportunistically discover a better peer, till a time it hangs-up and
connects to another client. Furthermore, Bittorrent’s rate-based tit-
for-tat data sharing model -- in which a host uploads data to a peer
for only as long as it can download data from that peer at a similar
data rate -- becomes superfluous in a point-to-point dialup
connection. This is because upload and download rates in a
standard p2p dialup connection are symmetric, e.g. 32kb/s upload
and download for typical v.90 modems. Section 3 discusses the
challenges and possible solutions to these challenges in detail.

3. PEER-TO-PEER DATA TRANSFER
In this section, we describe the design, implementation and
evaluation of DitTorrent.

3.1 Evaluation Methodology
In order to understand the behavior of DitTorrent, especially
under extreme conditions in the developing world, we use a
simulation-based approach. Even though we have released our
DitTorrent implementation (Client and Tracker) to a community
of users in Pakistan, via sourceforge [15], we chose a simulation-
based evaluation since very little data exists in terms of traces of
real torrents for extremely low-bandwidth connections. Moreover,
our simulator’s controlled environment made it possible to
evaluate aspects of our design that are otherwise difficult to infer
from tracker logs or by running moderately-sized experiments.

For our evaluation, we have implemented a discrete-event
simulator of DitTorrent, which extends the Bittorrent simulator
implemented by Bharambe et al. [11]. However, while the
underlying framework of our simulator is derived from the
simulator described in [4], our model of DitTorrent is almost
diametrically different from the Bittorrent model implemented by
[4]. For instance, the bittorrent simulator by Bharambe et al. is
designed to simulate parallel downloads by a Bittorrent client,
while DitTorrent is limited to point-to-point symmetric
upload/download between only two hosts. Likewise, Bharambe’s
simulator [4] assumes perfect knowledge of the location of each
block of a file, while a DitTorrent client’s knowledge about the
location of file blocks is often imperfect. Similarly, a Bittorrent
client is designed to maximize download bandwidth, while a
DitTorrent client attempts to minimize the time wasted in
negotiating new modem-to-modem connections.

To capture the idiosyncrasies of DitTorrent’s (offline) operation,
we implemented the following new features in the simulator
described in [4]: Point-to-point symmetric connections, call-
overhead resulting from modem-to-modem negotiation, busy-
tones overhead during “flash crowds”, offline block-discovery and
greedy peer selection with different “end-game” modes. Below
we describe the motivation, implementation and evaluation of
each of these features in detail.

In our experimental setup, we configured our simulator to use a
swarm of 100 nodes (typical Bittorrent swarm size). Our
simulations were run on a P4 machine 3.2GHz, with 1GB RAM.
Our simulation environment was configured with the following
parameters:

 In our simulation environment, all the participating nodes
were configured with symmetric download and upload
bandwidth, set at 30 Kbps.

0
100
200
300
400
500
600
700
800
900

4 12 20 28 36 44 52 60 68 76 84 92
100

File Size(KB)

Ti
m

e
Ta

ke
n

(s
ec

)

10 KBPS

15 KBPS

20 KBPS

32 KBPS

32 (1 Call Overhead)

32 (2 Call Overhead)

32 (3 Call Overhead)

32 (4 Call Overhead)

32 (5 Call Overhead)

Figure 3: Feasible interleaving points between p2p
and Internet

ACM SIGCOMM Computer Communication Review 10 Volume 37, Number 5, October 2007

 Peers in our simulation were bootstrapped with a single
block, unless otherwise stated in the experiments described
below.

 In our experiments, we measured the performance of the
system by varying the size of the file to be downloaded, and
where specifically mentioned, the number of initial blocks
allocated to each peer.

 Given the point-to-point nature of DitTorrent, each node was
configured to only connect with one other at a time.

 We set the seed leaving probability to 1 in our experiments;
we do not assume that a node stays in the simulation after
completing its download.

 In the simulations for offline block discovery and flash-
crowds (described below), nodes were introduced in an
ongoing experiment, after a random delay, to simulate late-
entering nodes.

3.2 Architectural Overview
DitTorrent is designed to be backwardly compatible with
Bittorrent. Compatibility with Bittorrent has obvious appeal in
terms of user adoption, making DitTorrent a vehicle for using
Bittorrent in the developing-world. Above all, DitTorrent derives
its incentive-driven tit-for-tat data-sharing model from Bittorrent.
Furthermore, high-level architectural components of DitTorrent
are derived from Bittorrent; files are published by advertising a
.torrent meta-file, clients make peer-to-peer connections to
opportunistically download, cache and publish blocks of files, and
a tracker acts as a directory service for clients to discover peers
from which blocks of a file may be downloaded. The use of a
.torrent file and a tracker for initial peer discovery and bootstrap
provides a basis for compatibility with Bittorrent; DitTorrent
tracker, as well as the DitTorrent .torrent file format, is designed
to be backwardly compatible with Bittorrent. As a result, existing
Bittorrent clients can interoperate with DitTorrent clients.
DitTorrent clients, however, of course have the additional
capability to establish point-to-point dialup connections for
accelerated download of content.

Before proceeding with the description of DitTorrent, it is
instructive to consider the behavior of Bittorrent over
characteristically low-bandwidth connections in the developing
world. Figure 4 plots the download time of a 10 MB file over

Bittorrent by a client connected to the Internet on a slow dialup
connection. The results shown in figure 4 were reported by the
original Bittorrent simulator of Bharambe et al [4], which most
notably, ignores TCP timeouts. Still, the download time of a file
goes up sharply as the bandwidth is reduced from 15kb/sec to
5kb/sec. This is because the number of chokes experienced by the
client (snubs by peers as they find better partners), increase as the
client bandwidth nears 10kb/sec. For comparison, in the case
when there are 30% low-bandwidth hosts in the mix of nodes
using Bittorrent, a client with a 10kb/sec takes close to 8.5 times
more than a cable node with a bandwidth of 100kb/sec for upload
and 250 kb/sec for download. For these low-bandwidth nodes,
point-to-point symmetric dialup connections, at 32kb/sec, can
offer a substantial performance improvement. For instance,
compared to a 10kb/sec Bittorrent client that downloads a 10MB
file in 2 hours and 21 minutes (derived from the experiments
shown in figure 4), a client using a point-to-point 32kb/sec
connection can download the same file in 41.6 minutes (assuming
a single point-to-point connection) -- a performance improvement
of close to 70%.

DitTorrent is designed dynamically switch between its offline and
online modes, depending on available bandwidth reported by the
Interleaving-scheduler. Since the online mode mimics the normal
Bittorrent operation, the rest of the paper describes the changes
we made to Bittorrent to implement the point-to-point (offline)
mode.

3.3 DitTorrent Tracker-Client Interaction
While DitTorrent’s online mode mimics Bittorrent, its point-to-
point mode requires special support from the tracker. Importantly,
unlike a traditional Bittorrent tracker that keeps track of currently
online hosts, a DitTorrent tracker must keep track of both offline
and online hosts interested in downloading a file. While
fundamental to the duality of operation of a DitTorrent client, this
extension requires only a minor modification to existing Bittorrent
trackers. Current Bittorrent trackers require a client to refresh its
registration periodically by sending announce messages after
interval number of seconds. A DitTorrent tracker, instead of
deleting the record of a client that fails to refresh its registration
after Interval seconds, simply marks the client offline and retains
its entry for future lookups from DitTorrent clients. However,
since dialup nodes are prone to frequent disconnections, our
DitTorrent tracker marks a client offline only after the client
misses successive periodic announcements.

A DitTorrent tracker distinguishes between Bittorrent and
DitTorrent clients such that the latter can be given additional
information for offline operation. To this end, a DitTorrent tracker
accepts an additional event attribute from a DitTorrent client; a
dialup client using DitTorrent registers with DitTorrent tracker
using an HTTP GET request, just like Bittorrent, but the event
param in the URL is set to 'dialup' to indicate that the registering
client is a DitTorrent client. A client announce with event param
set to dialup may include two additional parameters to the GET
request URL, as described below.

The key additional parameter in a DitTorrent client registration
request is a phone number to reach the client in the offline p2p
mode. While in the current implementation the phone number is
registered with the tracker as plain text, permitting DitTorrent
clients to make direct connections, it is possible to encrypt the
number for an intermediary trusted node that establishes a dialup

0.00
2000.00
4000.00
6000.00
8000.00

10000.00
12000.00
14000.00
16000.00
18000.00

25 20 15 10 5
Bandwidth (kb/s)

DownloadTime(sec) Choking Count

Figure 4: Bittorrent performance deteriotes
sharply as the client bandwidth drops to 10kb/sec

ACM SIGCOMM Computer Communication Review 11 Volume 37, Number 5, October 2007

connection between DitTorrent clients. We are currently
developing such rendezvous nodes, equipped with multiple
modems, that accept two encrypted numbers and establish a
spliced dialup connection between clients while protecting their
identity (phone-numbers) from each other.

Optionally, a DitTorrent client can also include a list of time-
windows that specify times of day during which dialup
connections may be established with the client. A client can
specify the following time-windows as part of its request to the
tracker: available_time_window specifies the time interval in
which the client is available for accepting phone calls,
query_time_window specifies the time interval in which the client
intends to make calls to download the file, and optionally, a
previous_time_window in case this request updates existing
registration of the client. For instance, a client installed on an
office computer may advertise a time-window between 8 PM and
7 AM when phone lines for the office are generally free.
Subsequent DitTorrent clients registering with the tracker are
given contacts of those peers whose available_time_window
overlaps with the query_time_window of the client (as well as
online clients). The use of time-windows in our system is
reminiscent of “zone mail hour” used by FidoNet [5] clients to
specify a time-window for receiving dialup connections.

3.4 DitTorrent Peer-to-Peer Interaction
DitTorrent’s offline point-to-point operation is fundamentally
different from Bittorrent. Where a Bittorrent client attempts to
minimize the download time of a file by opportunistically
connecting with and disconnecting (choking and unchoking) from
a large set of peers (peer swarm) in search for better download
bandwidth, a DitTorrent client must minimize the number of peer
connections when downloading a file. This is because “trying”
new peers in Bittorrent is an almost zero-overhead operation (an
unchoke message sent to the peer over a long-running TCP
connection), while a new dialup connection in DitTorrent incurs a
30 second overhead in negotiating the dialup connection. To
illustrate the point, consider the simulation results of Bittorrent
shown in figure 4. The Bittorrent client shown in Figure 4, with a
10kb/sec symmetric upload/download bandwidth, makes close to
564 connections (with rate-based choking period set at 10 sec and
opportunistic unchoking every 30 sec) during the download of a
file of size 10 MB. If these were dialup connections, the time
spent in negotiating new dialup connections would equal the

actual time spent in downloading the contents of the file (an
overhead of 100%).

Furthermore, given a symmetric upload/download bandwidth in a
p2p dialup connection, DitTorrent’s offline operation need not
include Bittorrent’s rate-based choking. Instead, a DitTorrent
client (in offline mode) should only choke a peer when the peer
can no longer upload newer blocks needed by the client; peer
connections last for as long as peers can reciprocate each other
with non-overlapping blocks of file, while there is no need for
opportunistic unchokes. This approach of peer-choking, similar to
pairwise block-level tit-for-tat (BLTFT) proposed in [4] (as
opposed to rate-based tit-for-tat implemented by Bittorrent), is a
natural fit in a point-to-point dialup setup and is implemented by
DitTorrent.

However, while disabling opportunistic unchokes and using
Block-level TFT avoids unnecessary connections in DitTorrent’s
point-to-point mode, the overhead of negotiating dialup
connections must be carefully managed, especially for smaller
files. This is because dialup connections, worth 30 seconds each,
incur an overhead equivalent to exchanging a whole block
(128kB) on Bittorrent at 32kb/sec.

3.4.1 Peer-to-Peer Dial-up overhead
In order to understand the overhead of modem-to-modem
negotiation in DitTorrent, consider the theoretical best and worst
case for downloading a file of size N blocks, with a client starting
with a single block of the file.

The theoretical best case, aimed at minimizing the number of calls
required to download a file, may be understood as peer selection
policy that exactly matches peer needs; a client calls only that
peer which has exactly the same number of complementary
blocks. In this case, with BLTFT, the first dialup connection of a
new client with a single initial block will result in the exchange of
1 block, making it 2 blocks at the client. The next call will result
in 2 blocks exchanged, making it 4 blocks at the client. Likewise,
the next call will result in 8 blocks at the client, then 16 blocks
and so on. Therefore, for a file of size N blocks, it will take at
least log2N calls to download all blocks of the file. This
theoretical best case assumes a perfect match of peer needs on
every call made by the client -- any mismatch would result in
additional future calls for either the caller or the callee. However,
while simple to implement, this scheme, which we dub perfect-

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5

File Size(MB)

C
al

ls
 M

ad
e

&
 R

ec
ei

ve
d

DitTorrent(Greedy) Worst Case(N-Calls) Best Case(lgN-Calls)

Figure 5: Comparison of the modem-to-modem
negotiation overhead of the greedy peer selection
with the best and worst cases

Greedy Scheme

0.00
500.00

1000.00
1500.00
2000.00
2500.00
3000.00
3500.00
4000.00
4500.00

0.00 1000.00 2000.00 3000.00 4000.00 5000.00 6000.00

File Size(KB)

Figure 6: Variability in file download times due to
the Last block problem in the simple greedy
strategy

ACM SIGCOMM Computer Communication Review 12 Volume 37, Number 5, October 2007

match, is prone to starvation of nodes in practice. The reason for
this is an implicit assumption in this scheme about a delicate
balance in the number of peers vying to download the file and the
total number of file blocks. For one, the total number of blocks in
a file must be in powers of 2, which cannot be assumed in a p2p
system that serves arbitrarily sized files. These blocks, moreover,
must be equally divided among peers at bootstrap, implicitly
requiring the total number of file blocks to be an even multiple of
the total number of peers. Finally, this best-case scenario is only
possible if pairs of nodes proceed in lockstep, a condition that is
difficult to orchestrate in practice since different nodes may join
the p2p network at different times.
The theoretical worst case may arise in a scenario in which a
client must make N calls to download a file of N blocks, incurring
a modem-to-modem negotiation overhead for each block of the
file. Keeping with Bittorrent’s bootstrap model of granting a
single block to a caller even when it has no new blocks to
reciprocate, this scenario is possible in practice when a solitary
new node joins the p2p network in which existing nodes have
close to 100% of the file. In this case, since the new node never
acquires unique blocks with respect to existing nodes, each call
only results in a single block given to the callee in the bootstrap
mode of Bittorrent.

At an abstract level, the impracticality of the best case, perfect-
match, approach stems from its rigidity; a peer calls another peer
only when there is an exact match of not only the blocks stored at
the peers but their mutual needs. This inflexibility can be
addressed by using an equally simple greedy strategy. In the
greedy strategy, a client simply calls that peer which can give it
the maximum number of blocks. A greedy client grabs the
maximum it can at any point in time, regardless of whether it is an
exact or a suboptimal match on either side of perfect-match.
Figure 5 compares the performance of this simple greedy-strategy
with the best (Log2N calls) and worst case (N Calls). The clients
in the simulation are bootstrapped with an initial set of 1-5
random blocks for swarm of size 100. However, while a simple
greedy strategy performs adequately well on average, we quickly
realized the impact of the “last-block-problem” in p2p systems
[4]. Figure 6 plots the download times from 20 different
simulations as we varied the file size. The variability in the

measured times for a given file size reflects the time for which
different nodes in the swarm may be “stuck” trying to download
the last few blocks of a file. Bittorrent employs two techniques to
help nodes that are near completion to finish quickly: End-game
mode, which enables a client close to finishing to quickly search
for the last few missing blocks, and Local Rarest First (LRF)
which helps balance the rarity of different blocks by requiring
clients to download the rarest block first from a connected peer.

In Ditttorent, we experimented with analogues of both of these
schemes. In the first implementation, we mimicked the effect of
the end-game mode by modifying the greedy policy, dubbed
greedy-completor. With this modification, a greedy client breaks
ties by favoring those peers that will finish the file download at
the end of the connection. Intuitively, this scheme is aimed at
enhancing the chances of relative newcomers to expedite the
completion of peers closer to finishing. Conversely, peers
relatively early in the race get blocks from those near completion,
causing rare blocks (typically stored at seeds or near-seeds) to be
transferred from the old to the new. Figure 7, like figure 6, plots
download times across 20 simulations, illustrating the reduction in
the variability of measured times for greedy-completor.

Our second strategy to combat the last-block-problem is inspired
by Bittorrent’s LRF strategy. However, LRF’s rationale is that a
peer should grab the rarest block first from a peer in case it is
choked prematurely. This has little impact in DitTorrent since a
p2p connection in DitTorrent lasts as long as peers have
something to exchange; there is no danger of unanticipated
choking due to a dip in the client’s upload bandwidth. Instead, we
implement Global Rarest First (GRF) strategy in DitTorrent.
Unlike LRF, in which a client grabs the rarest blocks stored at a
peer, a client using GRF chooses a peer that has the rarest blocks
stored at it. Viewed differently, LRF is a block prioritization
strategy, while GRF is a peer selection policy; a client using GRF
prioritizes its connections with peers according to the rarity of
blocks stored at them. For instance, in our greedy strategy, a client
that could exchange three blocks each with two of its peers, will
call that peer first which can offer comparatively rarer blocks.

Figure 8 shows that our greedy peer selection policy with GRF
performs better than greedy-completor in terms of the variability
in download times across 20 simulations.

Completor Scheme

0.00
500.00

1000.00
1500.00
2000.00
2500.00
3000.00
3500.00
4000.00
4500.00

0.00 1000.00 2000.00 3000.00 4000.00 5000.00 6000.00

File Size(KB)

Figure 7: Variability in the file download times
due to the last block problem in the greedy-
completor strategy

Globally Rarest First(GRF) Scheme

0.00

500.00

1000.00

1500.00

2000.00

2500.00

3000.00

3500.00

0.00 1000.00 2000.00 3000.00 4000.00 5000.00 6000.00
File Size(KB)

Figure 8: Variability in file download times due to
the last block problem with Global-Rarest-First
peer prioritization

ACM SIGCOMM Computer Communication Review 13 Volume 37, Number 5, October 2007

3.4.2 Flash Crowds in DitTorrent
As mentioned earlier, the point-to-point nature of DitTorrent’s
offline operation precludes multiple peer connections. In fact, a
client calling a peer that is already connected to another peer
would get a “busy-tone”. Moreover, unfortunately, this operation
of checking the availability of a peer incurs an extra overhead of
close to 10 seconds (time to call the number and receive a busy
tone). This overhead becomes particularly significant during the
so-called flash crowds [4], in which many clients want to quickly
download a newly accessible file. In a point-to-point setup, flash
crowds result in a large fraction of the call attempts failing with
busy-tones.

Intuitively, this may be addressed by introducing a wait-time
between calls during times of congestion. Our implementation
combats flash crowds by using two simple heuristics: 1) Each
client must wait for n seconds before trying again if it finds all of
its potential peers (peers with non-overlapping chunks) busy; 2) A
client must wait for n seconds between successive calls. The
former introduces a backoff period in the times of congestion,
while the latter is aimed at giving clients a chance to receive calls
in between making calls.

In our simulation experiments, we found that the backoff time was
more useful than the introduction of wait-time between calls. For
instance, figure 9 shows the file download time with respect to the
backoff time and a fixed time to wait-between-calls (WBC). The
performance of the system (file download time), improves
significantly by introducing a backoff time, but quickly tapers off
at around 8 seconds for a setup in which the average call time is 3
minutes. It is worth highlighting though that while we achieved
best performance with WBC set to a nominal 1 second, a WBC of
zero (no wait between calls) makes the performance exponentially
worse. A WBC of, say 25 seconds, however, makes the
performance more variable, without resulting in any real
performance advantage. We are currently exploring an adaptive
policy for WBC such that the value of WBC is dynamically
adjusted according to the congestion in the network. For instance,
the value of WBC may be increased multiplicatively by a constant
factor upon a failed call, and reduced correspondingly if a call
succeeds.

3.4.3 Offline Block Discovery
In Bittorrent, a client starts the download of a file by acquiring
from the tracker a list of peers that have chunks of the file. The
client then connects with the set of 80-100 peers returned by the
tracker (its peer swarm) and acquires from each a list of blocks
currently stored at the peer (called peer handshake in Bittorrent).
Subsequently, peers in a swarm keep each other informed about
newly acquired blocks by sending “have” messages. All this
mechanism of discovering file blocks rests on a Bittorrent client’s
ability to talk to multiple peers in parallel. Hence, this cannot be
directly mapped to our p2p dialup architecture.

We implement block discovery in DitTorrent’s offline mode by
using a scheme inspired by distributed gossip protocols [6]. In this
scheme, when a client calls a peer, it not only exchanges
complementary file blocks, the peers also exchange lists of blocks
discovered at hosts that previously connected to the clients
(including their own). The aim is to virally spread the knowledge
about the blocks stored at various hosts, while minimizing the
number of connections required spreading the information. For
instance, consider a DitTorrent client A that has previously
connected with (either as a caller or callee) nodes B and C, each
with the following sets of blocks: B{0,5,3}, C{1,2,9}. With our
gossip-based approach, when a newly arrived client D (with zero
current blocks) calls A, it is not only given a single block of file
(c.f. DitTorrent bootstrap mode), it is also given lists of blocks
stored at B and C (including the blocks exchanged in their
connection with A). Once understood like this, it quickly becomes
apparent that a client in this scheme will greatly benefit by
initially calling nodes that have been around for a long time i.e.
nearing completion.

Given this background, block discovery in DitTorrent’s offline
mode works as follows. Newly arrived clients “scrape” the tracker
to find out the percentage of file downloaded by each client in its
swarm (as reported by their last update message to the tracker).
Armed with this information, the client goes into offline mode. In
the offline mode, it first calls the host that has downloaded the
maximum number blocks of the file. Of course, this could be a
seed node, but a DitTorrent client only calls non-source seeds
since they have acquired a diverse knowledge while working their
way up from a single block to the completion of the file.

Optimum Choking Interval

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

1400.00

1600.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Choking Interval

Ti
m

e
Ta

ke
n(

m
in

)

WBC=1 WBC=25

Figure 9: Analysis of overhead due to “busy-tones”
in flash crowds

Downloading Time

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

0.
5

1.
5

2.
5

3.
5

4.
5

5.
5

6.
5

7.
5

8.
5

9.
5

File Size(MB)

Ti
m

e
Ta

ke
n(

m
in

)

Online Block Discovery Offline Block Discovery

Figure 10: Comparison of DitTorrent’s offline
block-discovery with Bittorrent “perfect
knowledge” about block locations

ACM SIGCOMM Computer Communication Review 14 Volume 37, Number 5, October 2007

Diversity of knowledge is important since the new client also has
to work its way up to completion, while abiding by the block-wise
tit-for-tat principle. In our implementation, a DitTorrent client
initially calls a fixed number of peers, three in our current setup,
that have downloaded the maximum fraction of the file. After this
initial bootstrap, a client using offline block discovery proceeds in
this mode till a time it has acquired information about all N blocks
of the file. If a non-seed node is available, this information may be
obtained in a single call. Subsequently, the client simply follows
the greedy scheme when choosing peers to exchange blocks.
Figure 10 compares the performance of DitTorrent’s gossip-style
offline block discovery with a setup in which a client has perfect
knowledge of its peers as in Bittorrent. The performance of
DitTorrent closely mirrors Bittorrent with its gossip-style offline
block discovery, with the overhead of block discovery becoming
more visible as we increase the number of file blocks (that must
be discovered).

3.4.4 Budget-based Download
Often in our work, we were asked about the economic feasibility
of our approach. This concern was raised because Internet is
typically a flat-rate service while phone calls are charged by the
minute. First, it is worth noting that POTS is increasingly
becoming like Internet in terms of service charges; it is typical for
telephone service providers to offer flat-rate regional or national
plans. In case of such a flat-rate subscription, our approach offers
“near-broadband” speed for no additional cost as long as calls are
localized in the flat-rate region. DitTorrent clients can be
configured to only call those peers that are within their calling
“region” by, for instance, matching the ISP calling code with
available peers. Importantly, given the p2p nature of our data
transfer scheme, the burden of making a phone call is shared
between peers; a peer downloads data both as a caller and a callee.

Initially, we considered providing an interface to the users to limit
the number of calls to be made by the client when downloading
the file. The intuition was that after the client has made the
specified number of calls, it goes into a passive mode in which it
simply waits to be called to acquire more file blocks. If a client
fails to download the file in a specified time, it prompts the user to
increase the call budget. In some sense, this scheme exposes a
tradeoff of calling-cost vs. timely-download to the user. It is worth
highlighting that with the current download speeds in the
developing world, such an architecture is still very practical; more
often than not, a user may be happy with a one-time extra cost to
quickly download an important file, otherwise not possible with

an extremely slow and intermittent Internet connection. However,
we found that limiting the number of calls this way not only leads
to starvation of peers, it results in an increase in the average
number of calls each client has to make to download a file. Figure
11 shows the percentile of nodes that complete a file download as
we increase the call budget. With a call-budget restriction, a 100%
completion rate is achieved for a call-budget that is slightly worse
than the average number of calls made in a setup without a call-
budget (average number of calls without a call-budget in this
simulation is 9).

4. IMPLEMENTATION
DitTorrent’s implementation comprises of the following three
components: DitTorrent Daemon, Browser plugin and the
DitTorrent Tracker.

1. The DitTorrent Daemon is written in python 2.4 and is an
extension of Bram Cohen’s Bittorrent version 4.4.0. The Daemon
includes the additional capability to make point-to-point telephone
calls using PPP connections for data transfer.
2. The Browser plugin is a plug-in for firefox (xpi file) which
detects and passes links .torrent files to the DitTorrent Daemon.
The Daemon component also provides the URLs of the web pages
for prefetching to the pre-fetching proxy. The prefetching proxy in
our implementation extends the open source wwwoffle [7] proxy,
specifically designed as a dialup offline proxy server.
3. The DitTorrent Tracker is written in C++ as an extension to the
open source BNBT tracker [8]. Our extension to the BNBT
tracker include time-window based lookups using efficient
interval-trees, as well as compliance with additional parameters
introduced to enable point-to-point dialup connections.

The source code of our implementation is available at [15]. The
distribution at sourceforge also includes the DitTorrent simulator
described in the paper.

5. SUMMARY AND FUTURE WORK
In the current age of broadband networks, dialup networking is
mostly a forgotten technology. Perhaps the most relevant
technologies for our system date back to the pre-Internet days,
including FidoNET [5], UUCP [9] and USENET [10]. However,
our use of an incentive-driven p2p data exchange mechanism
makes our architecture fundamentally different from such
systems. Importantly, unlike pre-Internet systems that relied
solely on dialup connections for moving content between
computers, our goal is to accelerate access to large content on
Internet by utilizing a dialup connection at the maximum
bandwidth supported by the modem. In our model, content still
“resides” on the Internet, but may be downloaded using a p2p
dialup connection to reduce download time. Our system combines
a number of architectural components, such as p2p data transfer,
intelligent connection interleaving and content-prefetching to
make a practical system.

Our p2p data transfer layer, DitTorrent, derives all of its major
design considerations from Bittorrent, and implements analogues
of concepts such as Tit-for-Tat download, end-game mode, block-
discovery, and bootstrap for our point-to-point dialup
implementation. The Block-level Tit-for-Tat (BLTFT) policy in
our system is derived from Bharambe et al [4]. Additionally, we
revisit the policy of optimistic unchokes to prevent unnecessary
connections in the point-to-point mode.

0.00

20.00

40.00

60.00

80.00

100.00

120.00

2 4 5 6 8 10 12 15 18 -1

Calls Allowed

%
ag

e
of

 In
co

m
pl

et
e

No
de

s

0

20

40

60

80

100

120

%
ag

e
of

 D
at

a
A

cq
ui

re
d

Incomplete Nodes (%age) Data Acquired(%age)

Figure 11: Analysis of budget-based download

ACM SIGCOMM Computer Communication Review 15 Volume 37, Number 5, October 2007

Currently, our system lacks comprehensive security architecture.
We are currently working on rendezvous servers much in the
same vein as the recently introduced Google click-to-call service
which hides the identities of the peers connected on a dialup.

While this paper is focused on using POTS modem-to-modem
dialup connections to circumvent extremely low bandwidth
Internet connections, we intend to explore high-bandwidth intra-
country deployments of Wireless Local Loop (WLL) and
WiMAX as well. Our proposed architecture, at an abstract level,
provides a mechanism for multiplexing the scarce and expensive
international Internet bandwidth over higher bandwidth peer-to-
peer connections within a developing country.

6. ACKNOWLEDGEMENTS
We would like to thank the anonymous reviewers for their
comments that helped improve this paper. The work presented in
this paper was in part funded by the Microsoft Research (MSR)
Digital Inclusion Grant, 2006. We would also like to thank
Ghulam Murtaza for his help in the final structure and layout of
the paper.

7. REFERENCES
[1] “The Digital Divide at a Glance”, World Summit on the

Information Society, Tunis 2005.

[2] Niraj Tolia, Michael Kaminsky, David G. Andersen, and
Swapnil Patil, “An Architecture for Internet Data Transfer”,
Proc. 3rd Symposium on Networked Systems Design and
Implementation (NSDI) San Jose, CA, May 2006

[3] Bram Cohen, “Incentives Build Robustness in BitTorrent”,
Workshop on Economics of Peer-to-Peer Systems, 2003

[4] AR Bharambe, C Herley, VN Padmanabhan. “Analyzing and
Improving a BitTorrent Network’s Performance
Mechanisms”, IEEE Conference on Computer
Communications (INFOCOM), 2006.

[5] FidoNet, http://en.wikipedia.org/wiki/FidoNet/

[6] AJ Ganesh, AM Kermarrec, L Massoulie. “Peer-to-peer
membership management for gossip-based protocols”, IEEE
Transactions on Computers, 2003.

[7] WWWOFFLE,
http://www.gedanken.demon.co.uk/wwwoffle/

[8] BNBT, http://bnbt.depthstrike.com/

[9] UUCP, http://en.wikipedia.org/wiki/UUCP/

[10] Usenet, http://en.wikipedia.org/wiki/Usenet/

[11] Bharambe, A. and Herley, C. and Padmanabhan, V. N.,
“Microsoft Research Simulator for the BitTorrent Protocol,”
http://www.research.microsoft.com/projects/btsim.

[12] D. Qiu and R. Srikant, “Modeling and Performance Analysis
of BitTorrent-like Peer-to-Peer Networks,” SIGCOMM, Sep.
2004.

[13] J.A. Pouwelse, P. Garbacki, D.H.J. Epema, and H.J. Sips, “A
Measurement Study of the BitTorrent Peer-to-Peer File-
Sharing System,” Technical Report PDS-2004-003, Delft
University of Technology, The Netherlands, April 2004.

[14] S. Saroiu, P. K. Gummadi, S. D. Gribble, “A Measurement
Study of Peer-to-Peer File Sharing Systems”, Multimedia
Computing and Networking 2002 (MMCN ’02).

[15] DitTorrent, http://dittorrent.sourceforge.net/

ACM SIGCOMM Computer Communication Review 16 Volume 37, Number 5, October 2007

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

