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ABSTRACT
Many modern computations (such as video and audio encoders,
Monte Carlo simulations, and machine learning algorithms) are de-
signed to trade off accuracy in return for increased performance.
To date, such computations typically use ad-hoc, domain-specific
techniques developed specifically for the computation at hand.

We present a new general technique, code perforation, for auto-
matically augmenting existing computations with the capability of
trading off accuracy in return for performance. In contrast to ex-
isting approaches, which typically require the manual development
of new algorithms, our implemented SpeedPress compiler can au-
tomatically apply code perforation to existing computations with
no developer intervention whatsoever. The result is a transformed
computation that can respond almost immediately to a range of in-
creased performance demands while keeping any resulting output
distortion within acceptable user-defined bounds.

We have used SpeedPress to automatically apply code perfora-
tion to applications from the PARSEC benchmark suite. The results
show that the transformed applications can run as much as two to
three times faster than the original applications while distorting the
output by less than 10%. Because the transformed applications can
operate successfully at many points in the performance/accuracy
tradeoff space, they can (dynamically and on demand) navigate the
tradeoff space to either maximize performance subject to a given
accuracy constraint, or maximize accuracy subject to a given per-
formance constraint. We also demonstrate the SpeedGuard runtime
system which uses code perforation to enable applications to au-
tomatically adapt to challenging execution environments such as
multicore machines that suffer core failures or machines that dy-
namically adjust the clock speed to reduce power consumption or
to protect the machine from overheating.

1. INTRODUCTION
The need to meet hard performance goals has motivated research

into systems that trade accuracy for performance or other benefits
(such as robustness, energy savings, etc.,). The standard approach
to building such applications is manual, ad hoc, and application
specific; typically requiring both domain and implementation ex-
pertise. For example, MP3 audio encoding uses a lossy compres-
sion algorithm designed to reduce the size of data needed to repre-
sent an audio recording. The compression works by reducing the
accuracy in parts of the sound file that are beyond the range that
most people can distinguish. This optimization uses a heuristic that
cannot be directly applied to other types of compression (e.g. im-

age and video) and does nothing to inform performance/accuracy
tradeoffs in other domains like financial analysis. Moreover, the
use of standard techniques to optimize a given MP3 encoder imple-
mentation requires (in addition to the requisite domain expertise)
significant technical skills and familiarity with the code base.

1.1 Code Perforation
We present a novel technique, code perforation, that automati-

cally enhances applications to support the management of perfor-
mance/accuracy tradeoffs. Given a user-specified distortion bound,
our implemented SpeedPress compiler automatically identifies parts
of the computation that can be discarded (skipped) without violat-
ing this bound. For example, if a user is willing to tolerate a .5 dB
degradation in signal-to-noise ratio (SNR) for a video, code perfo-
ration can automatically identify parts of the video encoder compu-
tation that it can skip while decreasing SNR by no more than .5 dB.
The result is a computation that performs less work (and therefore
consumes fewer computational resources) while still producing ac-
ceptable output.

In addition to enabling accuracy/performance tradeoffs, code per-
foration can enhance robustness and enable energy savings. Our
implemented SpeedGuard system adjusts the amount of code per-
foration in response to changes in the environment (such as core
failures or clock frequency scaling) to enable the application to con-
tinue to meet its performance goals (in exchange for some distor-
tion in the output) despite the degradation of the underlying com-
puting platform.

1.2 Implementation
SpeedPress performs code perforation by discarding loop iter-

ations, a process referred to as loop perforation. The perforating
compiler accepts standard C and C++ code and a user-provided
method for calculating the output distortion. The compiler then
uses profiling to explore the performance/accuracy tradeoff space
generated by discarding loop iterations from the original program.
Performance improvements are calculated as the speedup (the ex-
ecution time of the original application divided by the execution
time of the perforated application); accuracy changes are calculated
using the distortion model presented in [22]. The results of this ex-
ploration make it possible to use code perforation to automatically
maximize performance subject to a given distortion constraint or to
automatically minimize distortion subject to a given performance
constraint.

The SpeedGuard runtime system automatically monitors and main-
tains the performance of applications compiled with SpeedPress.



SpeedGuard uses the Application Heartbeats framework [16] to dy-
namically monitor the performance of the application as it attempts
to satisfy its real-time performance goals. If SpeedGuard detects
a drop in performance below the desired threshold, it dynamically
increases the amount of perforation to increase performance while
minimizing accuracy loss. If performance later recovers, the run-
time dynamically adapts to reduce the amount of perforation, po-
tentially switching the application all the way back the original ver-
sion (which executes with no perforation). SpeedGuard does not
rely on detecting specific faults. It instead detects changes in appli-
cation performance and adjusts the amount of perforation required
to accommodate the performance changes. It can therefore adapt
automatically to any type of failure that can result in performance
loss, making SpeedGuard applicable to a variety of situations such
as core failures, frequency scaling, or simply increased load. We
envision that this method will be of particular use in real time sys-
tems where producing a timely result (even with reduced accuracy)
is preferable to violating the application’s timing constraints.

We have evaluated our implemented system on a range of appli-
cations from the PARSEC benchmark suite [8]. Our experimental
results show that code perforation delivers significant performance
increases for six of the seven selected applications. Specifically, our
performance measurements show that code perforation is able to
deliver perforated applications that run between two to three times
faster than the original application while producing outputs that dif-
fer by less than 10% from the output of the original application.
Furthermore, our results show that SpeedGuard can dynamically
adapt the amount of code perforation to successfully meet timing
constraints in the presence of failures that degrade the underlying
computing platform. Specifically, our experimental results show
that code perforation makes it possible to meet performance goals
in the face of core failures during the execution of a multithreaded
application running on an multicore machine. Our results also show
that code perforation makes it possible to recover from dynamic
clock frequency changes. Code perforation can therefore enable
applications to respond productively to overheating (e.g. due to fan
failure) or changing energy constraints (e.g. low battery).

1.3 Scope
There are many applications, for example compilers and some

database systems, that have hard logical correctness requirements.
We acknowledge that code perforation is not appropriate for these
applications because it may cause the application to unacceptably
produce incorrect results.

There are also, however, a wide range of applications that can
tolerate bounded output distortion. Examples of such applications
include applications that process sensory data such as video, au-
dio, and images — for these kinds of applications, the code per-
foration distortion can either be imperceptible or preferable to the
sensory effects (such as jitter or interruptions in smooth content
flow) that failure to meet performance goals would induce in the
absence of code perforation. Other examples include applications
that perform Monte Carlo simulations, information retrieval and
machine learning applications, and the wide variety of scientific
and economics computations for which the important considera-
tion is producing an output within an acceptable precision range.
Code perforation can often acceptably improve the performance of
all of these kinds of applications while preserving acceptable out-
put precision. The prominence of these kinds of applications in the
PARSEC benchmark suite (which was chosen to be representative
of modern performance-intensive workloads) bears witness to their
importance in modern computing environments.

1.4 Contributions
This paper makes the following contributions:

• Basic Concept: It introduces the concept of code perfora-
tion, a general technique that can be automatically applied to
enhance applications to support accuracy/performance trade-
offs by selectively discarding computations. An exploration
of the resulting accuracy/performance tradeoff space makes
it possible to either maximize performance subject to a given
accuracy bound or maximize accuracy subject to a given per-
formance bound.
• Fault Tolerance: It shows how to tolerate faults in the un-

derlying computing environment by:

– Runtime performance degradation detection: using
the Heartbeat API to detect general program perfor-
mance degradation.

– Runtime performance adjustments: using code per-
foration to maintain application performance goals by
trading off accuracy for increased performance in re-
sponse to events such as core failures, dynamic changes
in environment settings, and increased load.

• Implementation: It presents the implementation of code per-
foration using:

– SpeedPress: A LLVM-based compiler which exploits
code perforation to trade accuracy for performance.

– SpeedGuard: A runtime system which dynamically
enables code perforation to provide fault tolerance.

• Evaluation: It presents experimental results from applying
code perforation to several benchmark applications from the
PARSEC suite. It also presents the experimental evaluation
of code perforation as a fault tolerance mechanism.

The remainder of this paper is organized as follows. Section 2
presents a simple example which illustrates the key concepts of
code perforation. Section 3 discusses the implementation of Speed-
Press, a perforating compiler for C and C++ programs. Section 4
presents the SpeedGuard runtime. Section 5 discusses our evalu-
ation methodology. Section 6 presents the results of applying the
perforating compiler to several PARSEC benchmarks. Section 7
presents the results of the fault tolerance experiments. Section 8
discusses related work. Finally, the paper concludes in Section 9.

2. EXAMPLE
We next present an example that illustrates the use of code per-

foration to increase the performance of the open-source x264 im-
plementation [32] of the H.264 video encoding standard. Video
encoders take a stream of input frames and compress them for ef-
ficient storage or transmission. The quality of a video encoder is
typically measured using the peak signal-to-noise ratio (PSNR) and
bitrate (or size) of the encoded video.

One of the keys to achieving good video compression is ex-
ploiting similarities between consecutive frames. The process of
finding these similarities is called motion estimation. During mo-
tion estimation the frame currently being encoded is broken into
16×16 regions of pixels called macroblocks. For each macroblock,
the encoder attempts to find a similar 16 × 16 region in a pre-
viously encoded reference frame. H.264 allows macroblocks to
be further broken down into sub-blocks, and motion estimation
can be performed on sub-blocks independently. x264 calculates
the similarity for macroblocks and sub-blocks by computing the
sum of Hadamard transformed differences (SATD) between the



static int pixel_satd_wxh(pixel_t *current,
int cur_stride,
pixel_t *reference,
int ref_stride,
int w,
int h)

{
int value = 0;
int i, j;

short temp[4][4];

for( i = 0; i < h; i+=4 ) {
for(j = 0; j < w; j+=4 ) {

// Performs element-wise subtraction of the
// reference frame and the current frame
element_wise_subtract(temp, current[j], cur_stride,

reference[j], ref_stride,
4);

// Performs an in-place Hadamard transform on the
// difference computed in the previous step
hadamard_transform(temp, 4);

// Sum the absolute values of the coefficients
// of the Hadamard transform
value += sum_abs_matrix(temp, 4);

}
current += 4*cur_stride;
reference += 4*ref_stride;

}

return value;
}

Figure 1: Code to compute sum of Hadamard transformed differ-
ences. This function is important in video encoding and a good
candidate for code perforation.

macroblock (or sub-block) and candidate regions of the reference
frame. Figure 1 presents a C function for computing the SATD
between two regions.

To find the best match for a macroblock, an encoder would have
to search the entire reference frame, but searching such a large area
is prohibitively expensive in practice. Even searching every loca-
tion in a relatively small region of the reference frame can impose
an unacceptable performance burden [14]. In practice, motion esti-
mation algorithms typically use clever heuristics to move from one
search location to another without having to examine every possi-
ble location.

Development of these algorithms is an active area of research
in video processing. The common evaluation metric of these al-
gorithms is the reduction in video quality over the raw input and
the amount of additional bits required to encode the video. This
inherent tradeoff between quality and performance makes motion
estimation a potentially good candidate for code perforation.

To evaluate the effect of perforation on accuracy, the compiler
needs a standard method for determining an acceptability model.
This model has two parts; the first is an output abstraction or a
method for mapping the output of the program to a numerical value
or values. In some cases these values are selected directly from the
output, in others these values are computed from output values.
The second component is distortion, which is a measure of how
much the output abstraction of the perforated code differs from that
produced by the unperforated version.

As mentioned above, video designers are typically concerned
with two metrics: PSNR and encoded bitrate, typically measured
in Mb/s. We therefore use these two values as the output abstrac-
tion for the video encoder. To compute the distortion, we measure

the change in both PSNR and Mb/s as a percentage of these val-
ues from the original encoder. We combine the distortions of the
two values by taking the weighted average. For this example, we
weight PSNR and Mb/s equally.

SpeedPress perforates the pixel_satd_wxh() function as follows.
It first compiles the encoder with profiling instrumentation that
measures the execution time and output quality. It next perforates
different code portions and runs the resulting perforated applica-
tion on representative inputs to record the effect of the perforation
on performance and distortion. SpeedPress uses loop perforation
as its code perforation mechanism (see Section 3). In this exam-
ple, the compiler perforates the outer loop (over i) by generating
code that skips every other iteration of the loop. The inner loop
(over j) is perforated in the same manner. The speedup and distor-
tion of each of these perforations is measured individually by the
compiler.

Perforation Speedup Distortion
outer loop 1.457 3.65%
inner loop 1.457 4.66%

Table 1: Results of code perforation applied to the SATD function.

Table 1 shows the results of applying perforation to the SATD
function in the x264 implementation [32] of H.264 video encod-
ing for a high-definition, 1080p video sequence. In this case, each
loop is perforated by skipping every other execution (a perforation
rate of 50%). The table shows how the speedup of the perforated
version compares to the original. In addition, it shows how loop
perforation affects distortion. Perforating the outer loop produces a
46 % increase in speed and a distortion of 3.65 %. In this case, the
PSNR is reduced by less than 0.4 dB while the impact on Mb/s is
6.70%. Perforating the inner loop also results in a 46 % increase in
speed and a similar reduction in PSNR while increasing Mb/s by
8.85%.

Of course, the loops in this function are far from the only loops
in the application amenable to perforation. The compiler attempts
to perforate each loop. If perforating a loop does not yield speedup,
causes unacceptable distortion or causes the program to crash then
that loop is not considered as a candidate for perforation. At the
end of this process, the compiler has a complete set of speedup and
distortion numbers for each candidate loop. We have found that the
compiler is often able to discover a number of loops that can be
perforated to provide varying performance/accuracy tradeoffs. The
candidate loops are ordered by their score (see Section 3), which
is based on the speedup and distortion caused by perforating that
loop. The loops shown in Table 1 represent the two loops found to
have the highest scores for x264.

Given a bound on acceptable distortion, the compiler uses the
scores of individual loops to find a set of loops which maximizes
speedup for that bound. For example, suppose a distortion of 10%
is acceptable for x264. In that case the compiler determines a set of
loops to perforate that maximizes speedup while keeping distortion
below the 10% bound.

To determine the set of loops that provides maximum speedup
for a given bound, SpeedPress starts by perforating the loop found
to have the highest score during its initial search. SpeedPress then
perforates additional loops prioritizing those that have the largest
scores. As each loop is added to the set of perforated loops, Speed-
Press measures the cumulative speedup and distortion. Loops are
added until the maximum allowable distortion is surpassed, at which
point the last loop, which pushed the distortion over the acceptable



bound, is removed. The remaining set of loops represents the set
of perforations which maximize speedup for the given distortion
bound.

For x264 and a distortion bound of 10%, SpeedPress finds the
two loops in Table 1 and 5 additional loops (for a total of 7 loops)
to perforate such that the total speedup is over 2× while the distor-
tion is 9.51%. This distortion is due to a 0.5dB decrease in PSNR
(which is just at the widely accepted perceptability threshold of
0.5dB) and an 18% increase in Mb/s. The set of loops that the
compiler perforates in x264 is shown in Table 3 and discussed in
greater detail in Section 6.

In addition to providing static performance/accuracy tradeoffs,
the SpeedPress compiler supports dynamic code perforation, which
allows perforation to be turned on and off while the program exe-
cutes. The SpeedGuard runtime system combines dynamic code
perforation with runtime performance monitoring to enable appli-
cations to automatically respond to environmental changes that af-
fect performance. To make use of SpeedGuard the programmer
specifies a minimum acceptable performance. If SpeedGuard ever
detects a performance drop below that level it can dynamically in-
crease perforation to bring performance back to an acceptable level.

To illustrate the use of the SpeedGuard system, consider x264
running on a processor which allows dynamic frequency scaling.
The minimal acceptable performance for x264 is set to thirty frames
per second corresponding to real-time speed. If the cooling fan for
the processor fails, the operating system might adjust the clock fre-
quency to reduce power and heat and keep the processor from fail-
ing. The lower clock frequency will result in lower performance
which will be detected by SpeedGuard. If the clock frequency
changes from 2.5 to 1.75 GHz, SpeedGuard can compensate by
perforating the outer loop of the pixel_satd_wxh() function to main-
tain performance at the cost of some distortion as shown in Table 1.
The SpeedGuard system is discussed in greater detail in Section 4,
while Section 7 provides detailed discussion of how SpeedGuard
allows x264 to respond to both core failures and dynamic changes
in processor frequency.
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Figure 2: Compiler Framework Overview

3. SpeedPress COMPILER FRAMEWORK

3.1 Overview
Our SpeedPress compiler is built using the LLVM compiler in-

frastructure [18]. Figure 2 presents an overview of the compiler
framework. The compilation process takes as input the application
source code, a set of representative inputs, and a user-defined ac-
ceptability model. Our evaluation focuses on applications written
in C/C++, but since SpeedPress operates on the level of LLVM bit-
code, it can support every language for which an LLVM front-end
exists (e.g. Fortran, Ada). The representative inputs are used to
determine the speedup/distortion tradeoff. The user-specified ac-
ceptability model consists of three parts: (1) abstraction of the pro-
gram output, (2) an accuracy test which measures the effect of code
perforation relative to the original (abstracted) output, and (3) the

maximum acceptable value of the accuracy test. SpeedPress per-
forms a set of transformation passes that insert instrumentation to
perform program profiling, loop identification, and loop selection.

3.2 Profiling
SpeedPress obtains its profiling information as follows. When it

compiles the original program for profiled execution, it inserts in-
strumentation that counts the number of times each basic block is
executed. It also inserts instrumentation that maintains a stack of
active nested loops. Additional instrumentation is added to count
the number of (LLVM bit code) instructions executed in each loop,
propagating the instruction counts up the stack of active nested
loops so that outermost loops are credited with instructions exe-
cuted in nested loops. The profile-instrumented version of the pro-
gram keeps track of the accesses of basic blocks within the loops,
the number of loop invocations (times the loop was entered from
outside), the number of loop iterations (times the loop body was
executed) and dynamic nesting of the loops (parent and children
loops) during the execution. SpeedPress uses the resulting instruc-
tion counts to prioritize the perforation of loops that execute more
instructions in the profiling runs over loops that execute fewer in-
structions.

3.3 Loop Perforation
Given a loop to perforate, our loop perforation transformation

takes as input a percentage of iterations to skip during the execu-
tion of the loop, and a perforation strategy. A transformation pass
alters the calculation of the loop induction variable to manipulate
the number of iterations that a loop will execute. The transforma-
tion may also include additional information from the run-time en-
vironment. Using the example from Figure 1, the pass conceptually
performs the following loop transformation:

for( i = 0; i < h; i+=4 ) { /* ... */ }

to

for( i = 0; i < h; i+=4 ) {
if (doPerforate(i, environment)) continue;
//...

}

The percentage of non-executed iterations is called the perfora-
tion rate (pr). Depending on the selected perforation rate a dif-
ferent performance/distortion trade-off can be made. For example
for a perforation rate pr = 0.5, half of the iterations are skipped,
for pr = 0.25, one quarter of the iterations are skipped, while for
pr = 0.75, three quarters of the iterations are skipped, i.e. only one
quarter of the initial work is carried out.

The compiler supports a range of perforation options, including
modulo perforation (which skips or executes every nth iteration),
truncation perforation (which skips either an initial or final block
of iterations), and random perforation (which skips randomly se-
lected iterations at a mean given rate). The actual generated code
exploits the characteristics of each specific loop perforation option
to generate optimized code for that option.

The current SpeedPress implementation supports both static and
dynamic loop perforation. Dynamic loop perforations can be turned
on and off by the run-time system, allowing for finer-grained con-
trol over the program execution. One example use of dynamic loop
perforation is given in Section 4.

3.3.1 Induction variables
SpeedPress perforation operations manipulate loops whose in-

duction variables are in canonical form [19]. It uses an LLVM
built-in pass which transforms loop induction variables into a form



in which the induction variable i has an initial value of 0 and is
incremented by 1 in every iteration until maxvalue is reached:

for ( i = 0; i < maxvalue; i++ ){ /* ... */ }

3.3.2 Modulo Perforation
Modulo perforation skips every n-th iteration, or executes every

n-th iteration. The percentage of skipped iterations is determined
by the perforation rate, pr, which is determined using the following
formula:

pr =

 1
n if every n-th iteration is skipped
1 − 1

n if every n-th iteration is executed

The implementation of modulo perforation considers three cases:
(1) large, (2) small, and (3) small where n is power of 2. In the fol-
lowing paragraphs, the implementation for the case when pr ≥ 0.5
will be referred to as large perforation, while the case when pr <
0.5 will be referred to as small perforation. Additionally, for small
perforation, if n is power of 2, a more efficient implementation is
available for some computer architectures.

The following examples describe each transformation. The im-
plementation of static perforation is presented first, followed by the
implementation details of dynamic perforation.

Large Perforation: For large perforation the value of the induction
variable increment is changed from 1 to n:

for (i = 0; i < maxvalue; i += n) { /* ... */ }

Small Perforation: small perforation is implemented by adding a
new term to the induction variable increment. The goal is to incre-
ment the value of the induction variable by 2 when the iteration is
to be skipped. The value of the induction variable is incremented
by 2 if the remainder of i divided by n is equal to some constant
value k, 0 ≤ k < n:

for (i = 0; i < maxvalue;
i = i + 1 + ( i % n == k ? 1:0 ) ) {

//.....
}

Small Perforation when n is Power of 2: When n is power of 2
(n = 2m), small perforation uses faster bitwise and operations to
calculate the remainder of i divided by n, which in this case are
lowest m bits of i:

for (i = 0; i < maxvalue;
i = i + 1 + ( i & (n-1) == k ? 1:0 ) ) {

//.....
}

Dynamic Perforation
Dynamic perforation allows loop perforations to be turned on

and off during the program execution. The runtime system pro-
vides a function doPerforate(LoopId) to check whether the specific
loop should be perforated in the next invocation. LoopId is an in-
ternal unique loop identifier assigned by the compiler. There are
two approaches to implementing dynamic perforation: (1) duplica-
tion of loop code and (2) augmenting increments with perforation
specific behavior. Loop code duplication involves duplication of
(part of) the original loop body, and subsequent modification of the
induction variable increment, as outlined for the static perforation
case.

Augmented increments, on the other hand, are inserted in the
original loop, and are activated only if the loop is to be perforated.
To decrease the overhead of the augmented perforation checks, the

call to the doPerforate function for all nested loops is located in
the preheader of the topmost loop, when loops belong to the same
function. Additionally, the compiler makes the list of loops that can
be dynamically perforated available to the runtime. In the following
paragraphs, we discuss the details of augmented increments, and
how they modify the original loops.

The dynamic implementation of large perforation assigns the
value of increment based on the perforation check:

int increment = doPerforate(loopId)? n : 1

for (i = 0; i < maxvalue; i += increment) { /* .... */ }

The dynamic implementation of small perforation controls the
iteration increment by assigning the appropriate value of the re-
mainder based on the perforation check. It utilizes the property
that the value of the remainder must be less than the value of the
divisor:

int remainder = doPerforate(loopId)? k : n;

for (i = 0; i < maxvalue;
i = i + 1 + ( i % n == remainder ? 1:0 ) ) {

//.....
}

Similarly, small perforation for n = 2m utilizes the property that
the result of a bitwise and with an m-bit number cannot exceed m
bits:

int remainder = doPerforate(loopId)? k : n

for (i = 0; i < maxvalue;
i = i + 1 + ( i & (n-1) == remainder ? 1:0 ) ) {

//.....
}

3.3.3 Truncation Perforation
Truncation perforation skips iterations at the beginning or at the

end of the loop execution. The iteration count of the perforated loop
is equal to (1 − pr) · maxvalue. Discarding iterations at the begin-
ning of the loop involves initialization of the induction variable i
to i = pr * maxvalue where maxvalue is known before the loop invo-
cation and is not changed during the loop’s execution. If dynamic
perforation is used, the induction variable i is initialized based on
the result of doPerforate(). The example of the loop is:

for (i = pr * maxvalue; i < maxvalue; i++) { /* ... */ }

Perforating iterations at the end of the loop accomplishes earlier
exit from the loop. This is implemented by decreasing the loop con-
dition bound. The new condition becomes i < (1 - pr) * maxvalue:

for (i = 0; i < (1 - pr) * maxvalue; i++) { /* ... */ }

If maxvalue is not modified from within the loop body, the new
condition can be precomputed. Otherwise, it needs to be checked in
every iteration. Instead of performing floating point multiplication,
which may be expensive on some architectures, it is possible to
represent the rational number 1 − pr as p/q, where p and q are
natural numbers. Then, the condition can be represented as q * i <
p * maxvalue. If p or q are powers of 2, shifting may be used instead
of multiplication. In case of dynamic perforation, the value of the
loop upper bound (or p and q) would be initialized based on the
result of the doPerforate() function.



3.3.4 Randomized Perforation
Randomized loop perforation skips individual iterations at ran-

dom, based on a user-specified distribution with mean pr:

for( i = 0; i < maxvalue; i++ ) {
if (skipIteration(i, pr)) continue;
//...

}

This type of perforation is the most flexible, but introduces the
greatest overhead. It allows the runtime to dynamically control per-
foration during the execution of the loop body and change the un-
derlying perforation distribution in the course of loop execution.
However, the complexity of the skipIteration() function may be-
come an issue, due to its frequent execution. It is preferable to
apply this technique on loops that have a smaller number of it-
erations and/or perform more work in each iteration. The call to
skipIteration() is, in most cases, inlined by the compiler to reduce
the call overhead. In the case of dynamic perforation, the loop may
be cloned before applying the perforation transformation. Cloning
allows the program to use the original version of the loop when the
perforation is off and the modified version when the perforation is
turned on.

3.3.5 Perforation Mode Discussion
Different perforation options may be more applicable to differ-

ent types of loops. Modulo perforations are most suitable for the
loops that have the work and/or data evenly distributed across the
iterations. The loops from Figure 1 are good candidates for modulo
perforation. Assuming a perforation rate pr = 0.5 the differences
that contribute to the final sum are sampled from a “checkerboard”
of 4 × 4 sub-blocks of the macroblock.

Truncation perforations are most suitable for loops that quickly
approach an answer in initial iterations and improve the approx-
imation of the final result in latter iterations. For example, from
Figure 1, a truncation-perforated program would calculate the sum-
of-Hadamard-transformed-difference for only one part (e.g. 8x8
subregion) of the macroblock. This may be appropriate in some
cases, but may not be appropriate when a contiguous sub-region of
the macroblock is not representative of the entire block. In contrast,
truncation perforation can be a good match for simulated annealing
programs where the final iterations of the perforated loop refine an
approximate answer generated in earlier iterations.

Finally, randomized perforation can be used interchangeably with
both modulo and truncation perforations. However, randomly per-
forated loops should tolerate the overhead of the internal logic and
updates to the state of the random number generator. Additional
care must be taken for multithreaded programs, as the shared pseudo-
random number generator may become a performance bottleneck.

3.4 Acceptability Model
To measure the effect of loop perforation, SpeedPress requires

the user to provide an acceptability model for the program output.
This model has two components, the first is an output abstraction,
while the second is a distortion metric. As part of the model the
user provides a bound on the acceptable distortion.

3.4.1 Output Abstraction
The output abstraction is a mapping from a program’s specific

output to a measurable numerical value or values. In the example
in Section 2, the output abstraction consists of the peak signal-to-
noise ratio and bitrate.

Creating a program output abstraction is a straightforward pro-
cess for users with basic knowledge of an application. Without

prior knowledge of the PARSEC benchmark applications, we were
able to produce output abstractions for each examined application
in a short time.

3.4.2 Distortion metric
To evaluate the effect of loop perforation on program output we

use an accuracy test based on the relative scaled difference be-
tween selected outputs from the original and perforated executions.
Specifically, we assume the program output abstraction produces
an output of the form o1, . . . , om, where each output component oi

is a number.
Given an output o1, . . . , om from an unmodified execution and an

output ô1, . . . , ôm from a perforated execution, the following quan-
tity d, which we call the distortion, measures the accuracy of the
output from the perforated execution:

d =
1
m

m∑
i=1

∣∣∣∣∣oi − ôi

oi

∣∣∣∣∣
The closer the distortion d is to zero, the less the perforated exe-

cution distorts the output. Because each difference is scaled by the
corresponding output component, distortions from different execu-
tions and inputs can be compared. By default the distortion equa-
tion weighs each component equally, but it is possible to modify
the equation to weigh some components more heavily. For more
on distortion see [22].

3.4.3 Bias Definition and Use
The distortion measures the absolute error induced by loop per-

foration. It is also sometimes useful to consider whether there is
any systematic direction to the error. To measure systematic error
introduced through loop perforation we use the bias [22] metric:

b =
1
m

m∑
i=1

oi − ôi

oi

Note that this is the same formula as the distortion with the ex-
ception that it preserves the sign of the summands. Errors with dif-
ferent signs may therefore cancel each other out in the computation
of the bias instead of accumulating as for the distortion.

If there is a systematic bias, it may be possible to compensate for
the bias to obtain a more accurate result. Consider, for example, the
special case of a program with a single output component o. If we
know that bias at a certain is b, we can simply divide the observed
output ô by (1 - b) to obtain an estimate of the correct output whose
expected distortion is 0.

3.5 Loop Selection
The goal of the loop selection algorithm is to find the set of loops

that can be perforated to produce the highest performance increase
for the lowest output distortion value, given the maximal accept-
able distortion and desired perforation rate. The algorithm for loop
selection performs the following steps:

• Identification of candidate loops for perforation.

• Measurement of performance and distortion for each candi-
date loop.

• For each input, the discovery of the loop set that maximizes
performance for a specified distortion bound.

• Selection of the loop set that provides the best results for all
training inputs.



LoopSelection (program, inputs, maxDist)
candidateLoops = {}
scores = {}

for i in inputs
candidateLoops[i] = performProfiling(program, i)
for each l in candidateLoops[i]
scores[i][l] = assignInitialLoopScore(l)

filterProfiledLoops(candidateLoops[i])

for l in candidateLoops
spdup, dist = perforateLoopSet(program, {l}, i)
scores[i][l] = updateScore(spdup, dist, scores[i][l])

filterSingleExampleLoops(candidateLoops[i], scores[i], maxDist)

candidateLoops, scores =
mergeLoops(candidateLoops[*], scores[*])

if size(candidateLoops) == 0
return {}

candidateLoopSets = {}
for i in inputs
candidateLoopSets[i] =
selectLoopSet(program, candidateLoops, scores, i, maxDist)

loopsToPerforate =
findBestLoopSet(program, candidateLoopSets, inputs)

return loopsToPerforate

Figure 3: Loop selection algorithm pseudocode

The pseudocode of the SpeedPress loop selection algorithm is
given in Figure 3. The steps of the algorithm are described in the
following sections.

3.5.1 Identification of Candidate Loops
Initially, all loops are candidates for perforation. The algorithm

invokes the profile-instrumented program, described in Section 3.2
on all training inputs in order to find candidate loops for perfora-
tion. Each loop is given a score according to its effect on the pro-
gram execution time and the number of invocations. The score is
calculated based on the normalized values of instruction count and
invocation number. The loops that have only a minor contribution
to the program execution time, an unsatisfactory number of itera-
tions/invocations, or that cannot be instrumented are filtered from
the candidates list.

3.5.2 Individual Loop Performance and Distortion
The algorithm perforates each candidate loop in isolation and

observes the influence of the perforation on the speedup and distor-
tion. The loop is statically perforated with a predefined perforation
rate. The pseudocode for the execution of loop perforation is
given in Figure 4. After the execution of the instrumented program
SpeedPress uses the acceptability model to calculate the distortion
from the expected output.

An extension of the algorithm tries different perforation rates
for individual loops in order to fit them within the bound. If the
speedup contribution of the added loop is not positive, the step will
be repeated with a higher perforation rate for the loop. If the dis-
tortion introduced by adding a loop is greater than allowed, the per-
foration rate of the loop may be decreased. Due to the potentially
large number of additional training runs, this extension is primarily
used for loops that have a greater influence on execution time.

The score for each loop is updated based on the measured speedup
and negative distortion from the performed executions and calcu-
lated as a weighted harmonic mean. Using a weighted harmonic
mean allows a user to prioritize loops either by greater speedup
(although the distortion may be larger, leading to fewer perforated

perforateLoopSet(program, loopSet, input)
program’ = instrumentLoops(loopSets)

time, output = execute(program, input)
time’, output’ = execute(program’, input)

abstrOut = abstractOutput(output)
abstrOut = abstractOutput(output’)

speedup = calcluateSpeedup(time, time’)
distortion = calculateDistortion(abstrOut, abstrOut’)

return speedup, distortion

Figure 4: perforateLoopSet pseudocode

loops), or by smaller distortion, at the expense of the speedup (lead-
ing to more perforated loops, each having lesser influence on pro-
gram speedup).

The current implementation uses only one, predefined perfora-
tion strategy for all loops. It is straightforward to extend the algo-
rithm to automatically select a perforation strategy (e.g. modulo, or
truncate) based on profiling information and the additional training
executions.

It is possible that a program with perforated loops will terminate
unexpectedly or hang during loop evaluation. If the program ter-
minates due to error (e.g. segmentation fault), the distortion is set
to 100%, disqualifying the loop from further consideration. If the
program is not responsive for a time greater than the execution of
the reference version, it is terminated, and the speedup set to 0, also
disqualifying the loop. Loops that do not increase the performance
and loops that cause distortion greater than the maximum bound
specified by the user are also removed from the candidates list.

After assigning scores for all individual loops, the algorithm
merges the results from multiple examples. The loop scores are
averaged over all inputs. Only the loops that have positive scores
for all inputs remain as candidates. If there are no such loops, the
selection algorithm terminates and returns the empty set.

At this point, the algorithm has finished its initial exploration of
candidate loops for perforation. The following steps search for a set
of candidate loops that, when perforated simultaneously, provide
maximum speedup while keeping distortion below the acceptable
bound.

3.5.3 Discovery of Loop Sets with Acceptable Dis-
tortion

The next step is to combine loops with high individual scores on
all training inputs and observe their joint influence on program ex-
ecution. Note that the distortions and speedups of programs with
multiple perforated loops may not be linear in terms of the individ-
ual perforated loop results (because of potentially complex inter-
actions between loops, including nesting, work dispatching, etc.).
This step is executed separately for each training input. Pseudocode
for multiple loop selection is given in Figure 5.

The algorithm maintains a set of loops that can be perforated
without exceeding the maximal acceptable distortion bound (maxDist)
selected by the user. At each step, it tries the loop with the high-
est individual score, and executes the program where all the loops
from the set and the new loop are perforated. If the performance in-
creases, and the distortion is smaller than the maximum allowable,
the loop is added to the set of perforated loops.

3.5.4 Selection of the Best Performing Loop Set
Finally, the loop sets from all training inputs are compared, as

shown in Figure 6. The best loop sets for each input are executed



selectLoopSet(program, candidateLoops, scores, input, maxDist)

loopQueue = sortLoopsByScore(candidateLoops, scores)

LoopSet = {}
cummulativeSpeedup = 1
while loopQueue is not empty
tryLoop = loopQueue.remove()
trySet = LoopSet U {tryLoop}
speedup, distortion = runPerforation(trySet, input)

if speedup > cummulativeSpeedup and distortion < maxDist
loopSet = trySet
cummulativeSpeedup = speedup

return LoopSet

Figure 5: selectLoopSet pseudocode

on other inputs. The score for each loop set is derived as a statistic
(e.g. minimum or mean) of the scores of executing the loop sets on
all inputs. A loop set that fails to terminate normally on some input
is excluded from the set of candidates. The loop set with the best
score on all training inputs is returned as the final loop selection.

findBestLoopSet(program, loopSets, inputs)

for each ls in loopSets
for each i in inputs
speedup, distortion =

perforateLoopSet(program, ls, i)
score[ls][i] = assignScore(speedup, distortion)

score[loopSet] = scoreFinal(score[ls][*])

return argmax(score)

Figure 6: findBestLoopSet pseudocode

The order of the loops is important if SpeedPress performs dy-
namic perforation. The set of loops in the loop set may be ordered
by their individual scores. The compiler encodes the information
about the speedup and distortion of perforated loops and makes it
available to the runtime subsystem. If the compiler performs static
perforation of the program, the set of loops is unordered, since all
loops are perforated throughout the program’s execution.

4. SpeedGuard RUNTIME SYSTEM

HB
API

Perf
Select

SpeedGuard
Runtime Monitor

HB
API

Loop i

Loop 1

Loop 2

Perf
Select
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Figure 7: SpeedGuard runtime system

This section describes the SpeedGuard runtime system for ap-
plying Code Perforation for fault tolerance. Figure 7 shows an
overview of the SpeedGuard system, which consists of three com-
ponents.

SpeedGuard uses the Application Heartbeats API to monitor the
dynamic performance of the application [16]. The loop perforation
selector enables dynamic loop perforation selection. The Speed-
Guard monitor orchestrates responses to events (such as failures,
recoveries, changes in the load, and frequency scaling) by dynami-
cally selecting loops to perforate.

4.1 Application Heartbeats
The Application Heartbeats API provides a standardized way for

an application to report both its performance goals and its dynamic
performance. Using this API, an application registers a heartbeat
at some interval. The performance of the application is then mea-
sured in terms of its heart rate. Additional functions allow the ap-
plication to specify its goals in terms of a minimum and maximum
heart rate. External services, such as the operating system, can
query an application’s current heart rate as well as its desired min-
imum and maximum.

The SpeedGuard framework requires that the programmer make
use of the Heartbeat API for any managed application. The pro-
grammer is responsible for placement of heartbeat calls, establish-
ing the minimum and maximum heart rate as well as the call to
register the heartbeat. This procedure typically requires minimal
code changes and need only be performed once per application.

Adding the appropriate heartbeat calls is typically straightfor-
ward given a basic knowledge of the application. The PARSEC
documentation describes the inputs processed by each benchmark.
Given this description, we were able to quickly find the loop that
iterates through the input and place the call to register the heartbeat
in the loop. At most a half-a-dozen lines of code were required to
augment each benchmark with the Heartbeat interface.

Establishing the minimal and maximal heart rate should be easy
for anyone who wants to make use of SpeedGuard. Since Speed-
Guard is designed to monitor performance and keep it within a
specified bound, we assume that the user already has determined
the desired performance for the application.

4.2 Dynamic Loop Perforation
The SpeedGuard framework can be incorporated with Speed-

Press to support dynamic loop perforation. In this case, the com-
piler performs dynamic perforation of the loops after finding the set
of loops that improve performance while keeping accuracy within
an acceptable range. Turning loop perforations on and off dynam-
ically, during the course of program execution, results in perfor-
mance increase while keeping the accuracy within the acceptable
range.

The compiler provides the runtime with a table that contains all
information about the dynamically perforated loops. For any loops
that SpeedGuard considers perforating, it can look up the expected
speedup and the expected distortion. Having this information al-
lows the runtime to make informed decisions in response to dy-
namic events.

Perforation is initially set to be off for all loops, so the application
initially runs as the unmodified version. Additionally, the compiler
adds a run-time system that adjusts perforation as described in the
next section.

4.3 Runtime Monitor
SpeedGuard is inserted by the compiler to monitor the applica-

tion’s heart rate by making calls to the Heartbeat API. If the heart
rate ever falls below the desired minimum, the SpeedGuard system
increases the amount of perforation. If performance later increases
above the desired maximum, the run-time decreases the amount of
perforation. SpeedGuard only perforates loops that have been dis-



covered and profiled by the compiler so their effect on the distortion
is known.

The SpeedGuard monitor checks performance at a given inter-
val specified in terms of heartbeats. For example, the monitor may
check performance every 20 heartbeats. This interval can be tuned
for the needs of a particular deployment of an application. Set-
ting the interval to be small results in more aggressive response to
performance changes while a larger interval leads to a more con-
servative response.

When performance dips below the desired minimum, Speed-
Guard computes the percentage difference. With this information,
SpeedGuard can determine a loop whose dynamic perforation re-
sults in a speedup that is most likely to reclaim the lost perfor-
mance. For example, if SpeedGuard detects performance 30 % be-
low the desired minimum, it will attempt to dynamically perforate
a loop that the compiler previously found to provide a speedup of
1.3.

SpeedGuard supports two modes of operation. In the first, ag-
gressive mode, it attempts to reclaim all lost performance at once.
Operating aggressively, the runtime may perforate multiple loops to
regain performance. In the second, conservative mode, the runtime
will dynamically perforate one loop, observe the change in perfor-
mance and then perforate additional loops as needed. The aggres-
sive mode tends to have a faster response to performance changes,
while the conservative mode tends to have the smallest impact on
distortion.

It is possible that SpeedGuard cannot find one set of loops that
keeps performance within the desired bounds. In this case, the run-
time will continuously raise and lower perforation to keep the aver-
age performance in the desired bound. An example of this behavior
is shown in Section 7.

4.4 Example
To illustrate how SpeedGuard operates, consider again the video

encoder example from Section 2. To make use of this framework,
the programmer first modifies the encoder to use the Heartbeat API
so that it registers a heartbeat as each frame is encoded. Addition-
ally, the programmer uses the API to specify the desired minimum
and maximum heart rate. In this case, the minimum might be thirty
beats per second, corresponding to thirty frames per second.

Having added a heartbeat to the application, the programmer
then submits it to SpeedPress. The compiler applies perforation and
adds the ability to turn this perforation on and off. Additionally, the
compiler inserts the calls to the run time system that monitor appli-
cation performance and adjust the level of perforation.

The resulting encoder can then be deployed. Initially the en-
coder will run at the desired speed of thirty frames per second.
Suppose the fan cooling the system fails and the operating sys-
tem reduces the processor frequency from 2.5 to 1.6 GHz to reduce
power and temperature. This change in frequency will result in a
change in the application performance to about 19 frames per sec-
ond. The change in performance is reflected in the change in heart
rate. When the application’s heart rate changes, it is detected by
SpeedGuard which perforates the inner loop of the SATD function
to increase performance by 45 % as shown in Table 1. This will
raise performance back to about twenty-seven frames per second.
If performance is still not acceptable, the runtime can perforate the
outer loop, bringing performance back up to the desired target.

In practice, the compiler finds a much richer set of loops to per-
forate in a video encoder which gives the run time system more op-
tions and more fine-grained control over performance adjustments.
See section Section 7 for the results of applying the full system to
create a fault tolerant video encoder.

5. EVALUATION METHODOLOGY
This section presents the methodology used to evaluate Speed-

Press and its ability to find meaningful performance-accuracy trade-
offs for a wide range of applications. All results are collected using
a single core of an Intel x86 server with dual 3.16 GHz Xeon X5460
quad-core processors. Benchmarks are taken from the PARSEC 1.0
benchmark suite because of its focus on capturing a diverse set of
emerging workloads [8]. These workloads are designed for the next
generation of processor architectures and their high computational
load makes them candidates for code perforation as it can reduce
this load at the cost of some accuracy loss.

5.1 Benchmarks
We use the following benchmarks in our evaluation. Together,

these benchmarks represent a broad range of computations includ-
ing financial analysis, media processing, engineering, and data min-
ing workloads.

• x264. This media application performs H.264 encoding on a
video stream. Distortion is calculated using the peak signal-
to-noise ratio (PSNR) of the encoded video as well as the
bitrate of the encoded video. PSNR is measured using the
H.264 reference decoder. For each of these values the per-
forated output is compared to the original. The distortions
for PSNR and bitrate are then averaged. The x264 bench-
mark includes both assembly and vanilla C implementations
of some functions. We use the C implementations to give the
compiler a larger set of loops to perforate.

• streamcluster. This data mining application solves the on-
line clustering problem. Distortion is calculated using the
BCubed (B3) clustering quality metric [2]. The metric cal-
culates the homogeneity and completeness of the clustering
generated by the application, based on external class labels
for data points. The value of the metric ranges from 0 (bad
clustering) to 1 (excellent clustering). The distortion is repre-
sented as the scaled difference between the clustering quality
of the perforated and original code. If the perforated program
performs better than the unmodified version it is considered
to have no distortion.

• swaptions. This financial analysis application prices a port-
folio of swaptions by using Monte Carlo simulation to solve
a partial differential equation. Distortion is calculated using
the price of the swaption and comparing the price of the per-
forated application to that calculated by the original. The
PARSEC benchmark only uses a single set of parameters so
all swaptions have the same value. To obtain a more real-
istic computation, the input parameters were altered so that
the underlying interest rate of the swaption can vary from
0 − 10 %.

• canneal. This engineering application uses simulated an-
nealing to minimize the routing cost of microchip design.
Distortion is calculated using the routing cost and comparing
the cost of the perforated version to the cost of the original.

• blackscholes. This financial analysis application computes
the price of a portfolio of European options by solving a
partial differential equation. The distortion is calculated by
comparing the price of options determined by the perforated
application to the price generated by the original application.

• bodytrack. This computer vision application tracks a hu-
man’s movement through a scene using an annealed parti-
cle filter. Distortion is calculated using a series of vectors



that represents the changing configurations of the body be-
ing tracked. Distortion is measured by computing the relative
mean squared error (RelMSE) for each vector by comparing
the vectors generated by the perforated version to those pro-
duced by the original. The RelMSE for each vector is then
divided by the magnitude of the vector produced by the orig-
inal and these values are averaged for all vectors.

In addition to these benchmarks, the PARSEC benchmark suite
contains the following benchmarks: facesim, dedup, fluidanimate,
ferret, freqmine, and vips. We do not include freqmine and vips
because these benchmarks do not successfully compile with the
LLVM compiler. We do not include dedup and fluidanimate be-
cause these applications produce complex binary output files. Be-
cause we were unable to decipher the meaning of these files, we
were unable to develop meaningful acceptability models and dis-
tortion metrics. We do not include facesim because it does not
produce any output at all (except timing information).

Finally, we do not include a detailed evaluation of ferret because
all of the time-intensive loops in this application fall into one of two
categories: either perforating the loop causes unacceptable output
distortion or the loop is part of a filtering phase that coalesces im-
age segments for use during a subsequent evaluation phase. Be-
cause perforating such loops increases the number of image seg-
ments considered during the evaluation phase, this process actually
decreases the overall performance. The initial exploration of the
performance/accuracy trade off space indicates that loop perfora-
tion is unable to acceptably increase the performance of this appli-
cation.

5.2 Perforated Executions
Each PARSEC application comes with three training inputs and

one native input. The training inputs are provided to support ac-
tivities (such as compiler optimizations that use dynamic profiling
information) that exploit information about the run-time behavior
of the application prior to building the production version. The
native inputs are designed to enable the evaluation of the applica-
tion on production inputs. We use the training inputs to explore
the performance/accuracy tradeoff space and select loops to perfo-
rate that provide the best combination of performance and accuracy
(see Section 6). We report performance and accuracy results from
executions that process the native inputs. These inputs were not
used as representative inputs during the exploration of the perfor-
mance/accuracy tradeoff space.

In all experiments except canneal, we set the compiler perfora-
tion rate to 0.5 (i.e., each perforated loop skips half of the loop
iterations). The modulo perforation strategy is used for all loops. If
a loop contributes less than 1% to the total execution time, the com-
piler never perforates the loop (and does not evaluate the effect of
perforating the loop during the exploration of the performance/ac-
curacy tradeoff space). Because canneal delivers a better combina-
tion of performance and accuracy at a higher loop perforation rate,
we use a perforation rate of 0.97 for this benchmark.

For some of the applications the provided datasets are not al-
ways appropriate for providing the full coverage needed to train
the compiler. All training inputs for x264 use the same video in
different resolutions. To avoid potential over-fitting, we perform
the training on different video with the same resolution as the na-
tive input (1080p). For bodytrack, the training datasets contain at
most 4 frames, which is insufficient for the training. We perform
the training using the first 20% (52 frames) of the native data set. In
streamcluster, points are drawn from a uniform distribution across
the input space – since the data is not cluster-able, it is impossible
to assess the effect of code perforation. We therefore use an existing

clustering evaluation data set covtype1 for testing. We also create
our own synthetic training inputs for this application. These train-
ing inputs have a predefined number of centers, with other points
normally distributed around the centers.

6. EVALUATION OF SpeedPress
This section presents an evaluation of the SpeedPress perforat-

ing compiler applied to the six PARSEC benchmarks described in
Section 5.1. The section begins by discussing general trends and
then discusses each benchmark individually.

6.1 General Trends
Figures 8–13 present, for each application, the normalized per-

formance (left y axis) and distortion (right y axis) as a function of
the acceptable distortion bound. The normalized performance is
computed as the speedup — the execution time of the original ver-
sion divided by the execution time of the perforated version. The
distortion is presented as a percentage. For each application, the
test input is the native input from the PARSEC benchmark suite.

In general, both the performance and distortion increase as the
acceptable distortion bound increases. Several points exhibit non-
monotonic behavior (the performance decreases as the acceptable
distortion bound increases). We attribute these anomalies to differ-
ences in the execution characteristics of the loops in the application
when run on the training versus native inputs. For others, increas-
ing the distortion bound does not enable the perforation of addi-
tional loops, so the performance stays the same as the acceptable
distortion bound increases.

For all benchmarks, SpeedPress is able to provide at least 2×
speedup for a maximum distortion bound of 15 %, and several of
the benchmarks can achieve 3× or greater speedup. In addition to
finding large speedups, SpeedPress keeps the distortion close to the
acceptable limit used during training. These results demonstrate
SpeedPress’s ability to deliver significant performance gains while
keeping the distortion within a (small) given bound. Furthermore,
these results show that SpeedPress can successfully increase the
performance of a range of computations, including financial analy-
sis, media processing, computer vision, and engineering computa-
tions.

Table 3 shows the data that SpeedPress collected during train-
ing for each of the six benchmarks. For each benchmark, the table
shows the function where the loop was found, the loop’s individual
effect on distortion and speedup, and the cumulative effect of distor-
tion and speedup when perforating that loop and every loop above
it in the table. This table demonstrates the importance of searching
for multiple loops to perforate, as for four of the six benchmarks,
multiple loops are perforated to achieve the best speedup.

6.2 Individual Benchmark Evaluation
This section presents a detailed analysis of the performance/ac-

curacy tradeoffs for each of the examined benchmarks. For each
benchmark we discuss the loops perforated by SpeedPress during
the training run with the 10 % distortion bound, discuss the impact
of distortion on the usability of the application, and discuss scenar-
ios in which perforated execution may be preferable.

6.2.1 x264
Figure 8 shows the space of performance/accuracy tradeoffs

SpeedPress finds for the x264 benchmark. As described in Sec-
tion 2, SpeedPress discovered considerable speedup opportunities

1Publicly available at UCI Machine Learning Repository
(http://archive.ics.uci.edu/ml/)
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Figure 8: x264
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Figure 9: streamcluster
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Figure 10: swaptions
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Figure 11: canneal
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Figure 12: blackscholes
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Figure 13: bodytrack

with low output distortion by perforating loops in x264’s motion
estimation functions. Motion estimation is a computationally ex-
pensive component of x264’s total computation and one function
in particular, pixel_satd_wxh(), contributes to over 40% of the total
runtime. This function was described in Section 2. Clearly, perfo-
rating this loop will improve performance.

Table 3 shows the loops that SpeedPress perforates for x264
during training using a 10% distortion bound. All seven loops are
functions used for motion estimation. The pixel_satd_wxh() func-
tion is the same one described in the example from Section 2.
The H.264 standard allows motion estimation to be performed to
quarter-pixel accuracy (using interpolation to generate these sub-
pixel values). The refine_subpel() function manages the process of
sub-pixel motion estimation and perforating the loop in this func-
tion reduces the number of locations that are searched for sub-pixel
matches. The pixel_sad_8x8() is similar to the SATD function dis-
cussed in the example section, except that this function computes
the sum-of-absolute-differences for 8 × 8 regions of the reference
and current frames without using a Hadamard transform. The func-
tion x264_me_search_ref() manages the entire process of motion es-
timation, and perforating this loop reduces the number of locations
searched during this phase of computation. Finally, the function
pixel_sad_8x16() is similar to pixel_sad_8x8() except it computes
the sum-of-absolute-differences on 8 × 16 regions of the current
and reference frames.

For the native input, SpeedPress is able to achieve a 2× speedup
on x264 with less than 10% distortion. In fact, the changes to image
quality are likely to be imperceptible to humans as the PSNR of
perforated x264 is within .3 dB of the unperforated version when
processing the native input. The major contributor to distortion is
file size; the perforated version increases the size of the file by 18%
for the native input.

There are several areas where using a perforated version of x264
may be a preferable to the original. One example is transcoding,
where one might want to convert an HD video to be viewed on

a personal electronic device. Here the speed of conversion may
be more important than saving memory. Also, real-time encoders
may prefer to run faster and meet performance deadlines if there
is sufficient bandwidth available to handle the increase in file size.
All these concerns can be expressed using the acceptability model.

6.2.2 Further Encoding Studies
Given the importance of motion estimation in video encoding, it

is surprising that it is possible to perforate the loops that govern mo-
tion estimation and still produce an acceptable result. These results
suggest two further studies. The first examines the effects on the
speedup and distortion if we simply do no motion estimation. The
second examines the effect of doing motion estimation with a 100%
perforation rate for the nested loop structure in the pixel_satd_wxh()
function (which, in effect, eliminates the execution of the loop). We
perform both studies using the native input. Table 2 summarizes
the results of these additional studies. For reference, the table re-
peats the results of the 50% perforation rate applied to both loops
in pixel_satd_wxh().

Experiment Speedup Distortion
No motion estimation 6.80 178.0%
pr = 100% for pixel_satd_wxh() 1.75 116.0%
pr = 50% for pixel_satd_wxh() 1.67 9.67%

Table 2: Additional studies examining perforation in x264.

Table 2 shows the speedup and distortion when we modify the
encoder to eliminate motion estimation. This implementation of the
encoder does not attempt to exploit temporal redundancy. Instead,
it encodes each frame using only spatial redundancy (or redun-
dancy found within a single frame). Such an encoder is known as an
I-frame (or intra-coded frame) only encoder. As shown in Table 2,
eliminating motion estimation provides a substantial speedup, but



this speedup comes at the cost of 178% distortion. In this case,
the distortion is due entirely to the 355% increase in the size of the
encoded video.

Table 2 also presents the speedup and distortion for our second
study, when we apply a 100% perforation rate to the loops in the
pixel_satd_wxh() function. This implementation of the encoder will
still perform motion estimation, but due to the complete elimina-
tion of the loops in the macroblock comparison function this func-
tion will always return zero. Returning zero causes any attempted
match for a macroblock to be viewed as a perfect match. As shown
in Table 2, the 100% perforation rate provides a speedup of 1.75,
which is better than that found using a 50% perforation rate; how-
ever, this speedup comes with 116% distortion. This distortion is
due to a 233 % increase in the size of the encoded video and a .3
dB loss of PSNR.

These studies show that eliminating motion estimation entirely,
or even eliminating a key part of it, produces unacceptable results.
These conclusions by themselves are not surprising as motion esti-
mation is a key feature of video encoding. However, it is surprising
that code perforation can skip a significant amount of the motion
estimation computation while still producing encoded video with
acceptable distortion. These studies highlight the ability of Speed-
Press to automatically find non-trivial parts of a computation to skip
while still producing acceptable output.

6.2.3 streamcluster
Figure 9 shows the space of performance/accuracy tradeoffs

SpeedPress finds for the streamcluster benchmark. This benchmark
solves the online clustering problem by partitioning a set of points
such that each is assigned to a group with the closest mean. Speed-
Press finds two loops to perforate for the streamcluster benchmark
as shown in Table 3. The first loop, in function pFl(), estimates the
cost of opening a new cluster center. Perforating this loop allows
the application to make a less accurate estimate of this cost more
quickly. The second loop, in function dist(), calculates the dis-
tance between two points. Perforating this loop effectively allows
the application to estimate the distance by treating the points as if
they had lower dimensionality. SpeedPress achieves a speedup of
2.5x with a distortion of 0.35%.

There are several applications for which the increased speed of
the perforated streamcluster might be preferable. For example, con-
sider the problem of performing data mining on a stream of network
traffic. In this scenario it might be more important to get an approx-
imation of the clustering while maintaining performance that keeps
up with the rate of network traffic. Using perforation allows this
tradeoff. Another potential use is to quickly assess some unknown
initial clustering parameters, such as an estimation of the minimal
and maximal number of clusters. After this initial assessment, a
more accurate, but slower version of the code could be used.

6.2.4 swaptions
Figure 10 shows the space of performance/accuracy tradeoffs

SpeedPress finds for the swaptions benchmark. This benchmark
computes the price of a portfolio of swaptions using Monte Carlo
simulation. swaptions is the only benchmark of the six which shows
significant bias, and correcting that bias is important for allowing
the compiler to achieve significant speedup. When SpeedPress ac-
counts for bias, it perforates three loops in the HJM_Swaption_Blocking()
function. This function is the where most of the time is spent in the
program and these loops govern how many Monte Carlo simula-
tions are used. The function HJM_SimPath_Forward_Blocking() com-
putes and stores the results of one simulation. Perforating these
four loops results in a speedup of 2×, while the bias adjusted out-

put has a distortion of only 2 %.
The ability of the perforated and bias adjusted swaptions to ap-

proximate the true result in a fraction of the time has several appli-
cations. For example, an application could use perforation to spec-
ulatively price swaptions and then slowly compute the exact price
later as a monitoring step. In addition, in a very volatile situation
it may be preferable to quickly achieve an estimate of the swaption
price and act on that price immediately rather than waiting for a
slower, but more accurate result.

6.2.5 canneal
Figure 11 shows the space of performance/accuracy tradeoffs

SpeedPress finds for the canneal benchmark. This benchmark per-
forms the place-and-route function on a processor netlist using sim-
ulated annealing. As shown in Table 3, SpeedPress finds only
one significant loop to perforate for this application, in the run()
method of the annealer_thread class. This loop is a for loop nested
in a while loop. The while loop checks a termination condition
and if it does not terminate, then the for loop attempts a number of
moves to improve the routing cost. Perforating this for loop causes
less work to be done between checking the termination condition.
Checking the termination condition more often allows the program
to exit sooner in the case where it has reached a point of diminish-
ing returns — the point when moves are more likely to be rejected
than accepted. In exchange for the earlier termination, the perfo-
rated application attempts fewer moves at this point of diminishing
returns and thus misses some additional moves that further reduce
cost.

While the training run estimated the speedup for canneal to be
1.3× with a 10 % distortion bound, the actual speedup measured
using the test data set shows a speedup of over 2.5× for the same
distortion bound. We attribute this difference to the much greater
complexity of the test data set compared to that used for training.
The native input netlist is over six times larger than the simlarge
input. The larger complexity of the input means that the unper-
forated program spends a longer time operating past the point of
diminishing returns.

The perforated canneal could be useful for rapid prototyping,
saving the more time consuming full version for the final step. Chip
layout is a time-consuming part of processor design and a perfo-
rated version of such an application allows engineers to explore
different designs quickly.

6.2.6 blackscholes
Figure 12 shows the space of performance/accuracy tradeoffs

SpeedPress finds for the blackscholes benchmark. As shown in the
figure, both the speedup and distortion curves are flat. This is be-
cause SpeedPress only finds one loop to perforate. This is the outer
loop of the main() function, as shown in Table 3. SpeedPress deter-
mines that this single loop can be perforated to provide a speedup
of almost 2 with no distortion.

The fact that SpeedPress is able to double the speed of the ap-
plication without affecting the result is surprising. Closer inspec-
tion of this loop reveals it is superfluous as it does not affect the
result. Rather, this loop appears to have been added to the bench-
mark solely to increase the workload and causes the same results
to be computed repeatedly. This benchmark demonstrates how
SpeedPress can be used to find redundant computation.

6.2.7 bodytrack
Figure 13 shows the space of performance/accuracy tradeoffs

SpeedPress finds for the bodytrack benchmark. As shown in the
figure, SpeedPress is able to find good speedups for this benchmark



Figure 14: Reference frame. Figure 15: Output of bodytrack in the presence of core failures with
perforation.

with very little distortion. bodytrack uses an annealed particle filter
and Monte Carlo simulation to track a human through a scene and
SpeedPress finds several loops to perforate within the annealing
and Monte Carlo steps. The loop with the biggest impact is the one
which updates the application’s internal model of the body’s current
pose. This loop is a good candidate for perforation due to its signif-
icant contribution to program runtime and because it uses particle
annealing and Monte Carlo methods to approximate the position of
the body at each time step. Additionally, the compiler finds several
other loops that compute measurements of various image features
and determines that they can be perforated without significant loss
in accuracy.

Table 3 shows that SpeedPress is able to find a number of loops
to perforate, and the total effect of perforating these loops results
in a speedup of more than 3× while keeping distortion below 2%.
The loop in the Update() method of the ParticleFilter class is the
one mentioned above that controls the Monte Carlo and particle
annealing steps. For each new frame, bodytrack computes the po-
sition of the body and the likelihood that the new position is correct
given the old position. The ImageErrorInside() function contributes
to this calculation. GetObservation() reads the data for a new frame
and performs some image processing including edge detection and
creation of binary images. Perforating GetObservation() means that
the application uses less data for subsequent computation. The next
four functions for bodytrack listed in Table 3 all contribute to de-
termining the location of various body parts in the current frame.
The OutputBMP() function writes an image illustrating the current
position of the body. Perforating this function does not affect dis-
tortion because our output abstraction for bodytrack only includes
the numerical representation of the body’s position and not the out-
put image2. The last three loops listed in the table perform a one-
dimensional filter on rows of the image.

As shown in Figure 13, despite considerable performance gains,
distortion levels remain low. This is due to the fact that the dis-
tortion metric is influenced heavily by a small number of rela-
tively large magnitude components of the vector which describes
the body’s configuration. The large components represent the chest
and head of the body being tracked. The perforated version of
bodytrack is able to identify and track the head and chest with high
accuracy at the cost of reduced accuracy for the arms and legs. The
degree to which the application miscalculates the position of the
arms and legs is proportional to the amount of perforation. Fig-
ure 15 shows how perforation affects the output of bodytrack for
our experiments on fault tolerance. Section 7 contains detailed dis-

2For experiments on fault tolerance, we disable perforation in this
loop to have visual confirmation that the output is acceptable.

cussion of these figures.
The perforated version of bodytrack may be appropriate for sev-

eral machine vision applications where quick understanding of the
general location of a person is more important than determining the
exact configuration of their appendages. An example of such a sce-
nario is an autonomous car that needs to quickly determine whether
or not a person is on a course likely to result in collision. Also secu-
rity cameras may need to quickly determine whether or not a person
has entered a scene without regard to their exact configuration.

7. EVALUATION OF SpeedGuard
This section presents several experiments illustrating how the

SpeedGuard runtime system can use the performance/accuracy trade-
offs discovered by SpeedPress to provide robustness in the face of
faults. In the first experiment, the run-time responds to simulated
core failures. In the second experiment, the run-time responds to
a dynamic change in clock speed. We focus on our fault tolerance
experiments on x264 and bodytrack because they are the largest
(in lines-of-code) and most complicated of the six benchmarks and
therefore provide the most realistic scenarios in which to evaluate
SpeedGuard.

For these experiments, we use a different video as input to x264.
The native input video of PARSEC has regions of varying difficulty
making it difficult to separate performance changes due to the en-
vironment from changes due to the input. For this reason we use a
video which is, on average, more difficult to encode, but the diffi-
culty does not vary much from frame to frame. For bodytrack, we
use the native input in all fault tolerance experiments.

We measure the overhead of SpeedGuard by comparing the speed
of the benchmarks with the run-time enabled to the speed with no
run-time system. We find that SpeedGuard contributes less than 1%
to the execution time and conclude that the overhead of the system
is insignificant.

7.1 Core Failure
In the first experiment, SpeedGuard responds to simulated core

failures. Parallel versions of x264 and bodytrack are run on eight
cores of an Intel Xeon X5460 dual quad-core processor. At a given
point in the computation core failure is simulated by restricting the
operating system from scheduling the benchmark on three of the
eight cores. The target performance for both programs is commu-
nicated to SpeedGuard using the Heartbeat API. Both applications
request a minimal heart rate between 90% and 115% of what they
achieve in a system with no failures.

Figures 16 and 17 show the results of the core failure experi-
ments for each of the benchmarks. These figures show the dynamic



x264
Individual Cumulative

Function Distortion Speedup Distortion Speedup
pixel_satd_wxh, outer 3.65% 1.457 3.65% 1.460
pixel_satd_wxh, inner 4.66% 1.457 9.67% 1.672
refine_subpel 0.05% 1.098 9.83% 1.789
pixel_sad_8x8, outer 0.01% 1.067 9.96% 1.929
pixel_sad_8x8, inner 0.03% 1.060 9.94% 1.986
x264_me_search_ref 0.21% 1.014 9.51% 2.054
pixel_sad_8x16, outer 0.02% 1.005 9.53% 2.058

streamcluster
Individual Cumulative

Function Distortion Speedup Distortion Speedup
pFL, inner 0.00% 1.252 0.00% 1.252
dist 0.00% 1.037 0.00% 1.708

swaptions (with bias adjustment)
Individual Cumulative

Function Distortion Speedup Distortion Speedup
Swaption_Blocking, outer 2.854% 1.983 2.854% 1.983
SimPath_Forward_Blocking 4.903% 1.014 8.593% 2.068
Swaption_Blocking, middle 1.111% 1.010 7.816% 2.129
Swaption_Blocking, inner 1.312% 1.014 7.990% 2.154

canneal
Individual Cumulative

Function Distortion Speedup Distortion Speedup
annealer_thread::run 7.467% 1.289 7.467% 1.289

blackscholes
Individual Cumulative

Function Distortion Speedup Distortion Speedup
main, outer 0.0% 1.898 0.0% 1.898

bodytrack
Individual Cumulative

Function Distortion Speedup Distortion Speedup
ParticleFilter::Update 0.050% 1.526 0.050% 1.526
ImageErrorInside, outer 0.038% 1.192 0.032% 1.809
ImageErrorInside, inner 0.028% 1.160 0.040% 1.957
GetObservation 0.371% 1.186 0.309% 2.291
BinaryImage, inner 0.023% 1.127 0.573% 2.409
BinaryImage, outer 0.036% 1.114 0.684% 2.449
MultiCameraProjectedBody, inner 0.146% 1.108 0.416% 2.752
MultiCameraProjectedBody, outer 0.062% 1.102 0.416% 2.935
ProjectedCylinder, outer 0.098% 1.036 0.968% 2.975
ProjectdCylinder, inner 0.056% 1.033 1.260% 3.036
OutputBMP 0.000% 1.017 1.260% 3.174
TrackingModel 0.064% 1.007 0.387% 3.214
FlexFilterRow, outer 0.000% 1.007 0.387% 3.247
FlexFilterRow, inner 0.078% 1.001 1.826% 3.284

Table 3: Loops selected for perforation in PARSEC benchmarks during training using 10% distortion bound.



behavior of the benchmark in the presence of core failures. For both
figures, time, measured in heartbeats, is displayed on the x-axis,
while performance is displayed on the left y-axis. Performance is
measured using a sliding average over the last twenty heartbeats
and it is shown for three scenarios. The first scenario is repre-
sented by the curve labeled “Baseline” and shows the performance
of the system with no runtime and no core failures. The second sce-
nario, represented by the curve labeled “No perforation” shows the
performance of the system with core failures but without run-time
support. The third scenario, labeled “SpeedGuard w/ perforation”
shows the performance of the benchmark with SpeedGuard enabled
in the presence of core failures. All performance is normalized to
that of the baseline system. The points where core failures occur
are the same for scenarios with and without perforation and these
points are marked in the figures using a dashed vertical line. The
right y-axis shows how the number of perforated loops varies dy-
namically as SpeedGuard responds to changes in performance.

7.1.1 Core failure in x264
Figure 16 shows the behavior of x264 in the presence of core

failures. The “No perforations” curve shows that the core failures
cause performance to fall to about 65% that of the baseline sys-
tem. In contrast, SpeedGuard is able to respond to the core failures
by dynamically perforating loops. As shown in the chart, when
the core failures occur SpeedGuard begins perforating loops until
performance returns to the desired value. By heartbeat 260, per-
foration has caused the application to exceed the maximal desired
heart rate, so SpeedGuard reduces perforation. From that point on,
SpeedGuard alternates between perforating three or four loops in
an attempt to keep performance as close as possible to the desired
value. By the end of the sequence performance is within 3% of the
baseline system.

SpeedGuard is able to maintain the performance of x264 with-
out resorting to video-specific fault tolerance methods like skipping
frames. While common, the technique of dropping frames can have
a large detrimental effect on user experience. For this example,
the system with core failures would have to drop one out of every
three frames, which would reduce a system with a frame rate of 25
frames per second to 16 frames per second. This drop in frame rate
would be noticeable to the viewer as a stutter in the video. Further-
more, enabling an encoder to drop frames requires additional work
for the programmer beyond the development of the encoder itself.

SpeedGuard is able to adjust to meet the performance goal with
no measurable change to the quality of the video (measured in
PSNR)3. SpeedGuard does increase the bitrate of the encoded video
by 6%. This increase in bitrate could easily be tolerated by allocat-
ing a small amount of additional bandwidth or disk space. Speed-
Guard is able to provide this service for the user with no additional
burden other than inserting calls to the Heartbeat API.

7.1.2 Core Failure in bodytrack
Figure 16 shows the behavior of bodytrack in the presence of

core failures. The “No perforation” curve shows that the core fail-
ures cause performance to fall to about 82% of the baseline sys-
tem. As for x264, SpeedGuard is able to respond to the core fail-
ures by dynamically perforating loops. When the core failures oc-
cur, SpeedGuard begins perforating loops until performance returns
to the desired value around heartbeat 90. For bodytrack, Speed-
Guard consistently alternates between using three and four perfo-
rated loops to keep the average performance within the bounds.
From heartbeat 90 until the end of the sequence the average perfor-
3Output videos are available at
http://www.youtube.com/view_play_list?p=0347D028F143EA93.

mance is only 7% greater than that of the baseline system and well
within the specified bounds.

We view the SpeedGuard system as “pushing” bodytrack along
in this instance. When performance dips below a certain level
SpeedGuard gives the application a push and it momentarily ex-
ceeds its goals, so the system backs off and stops pushing. With-
out the push, however, performance falls back below an acceptable
level and the process repeats. Even though the instantaneous per-
formance (measured using a 20 heartbeat sliding window) is not
in the desired range, the average performance is, and these pushes
allow bodytrack to keep up with its goals. In a real-time system,
the periods where bodytrack runs below desired speed correspond
to the application falling behind while data accumulates in a buffer.
The momentary burst in speed (from the push) allows bodytrack to
catch up and clear this buffer to keep it from overflowing.

SpeedGuard achieves this performance with less than 2% in-
crease in distortion. The bodytrack benchmark outputs images that
illustrate the track, and Figure 14 shows the output of the unmodi-
fied program while Figure 15 shows the output of the system which
uses SpeedGuard to maintain performance in the face of core fail-
ure. The two images are almost identical, except that SpeedGuard
has lost track of the location of the person’s left forearm. Such a
small error would likely not effect the performance of a robot or
other autonomous system designed to interact with the human.

7.2 Frequency Scaling
In the second experiment, SpeedGuard responds to a dynamic

change in core frequency. In this case, the benchmarks are run on
an Intel Core 2 Duo T9400. The operating frequency of the chip
can be adjusted dynamically using the cpufrequtils infrastructure
of Linux [1]. Approximately one quarter of the way through the
computation the chip frequency is reduced from 2.53 GHz to 1.6
GHz. Then, approximately three quarters of the way through the
computation, the frequency is reset to its original value. The target
performance for both benchmarks is established using the Heart-
beat API. Both applications request a minimal heart rate that is no
less than 90% and no more than 115% of what they achieve in a
system with no frequency scaling.

Figures 18 and 19 show the dynamic behavior of the benchmarks
in reaction to a dynamic change in processor frequency. As in the
core failure experiment, time is displayed on the x-axis, while per-
formance is displayed on the left y-axis. Performance is again mea-
sured using a sliding average over the last twenty heartbeats and it
is shown for the baseline scenario (with no frequency change), a
scenario with sudden frequency change but no perforation, and the
scenario with a frequency change, but with SpeedGuard enabled.
The points where frequency changes are labeled in the figures us-
ing dashed vertical lines. The right y-axis shows how the number
of perforated loops varies dynamically.

We note that the frequency scaling experiment demonstrates not
only the ability to use code perforation to respond to faults, but
also the ability to trade accuracy for power savings. Power in a
microprocessor is proportional to cv2 f , where c is capacitance, v
is voltage and f is frequency. In these experiments, processor fre-
quency is reduced by 36% and SpeedGuard maintains performance.
This allows us to effectively reduce power by 36% in exchange for
some accuracy loss; however, if the processor operates at lower
frequency, we could also lower the voltage for further reductions
in power. In fact, the processor used in this study does lower volt-
age when frequency is lowered. When voltage is also reduced from
1.3V to 1.1V, the total power savings is over 2.2×.
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Figure 16: Dynamic behavior of SpeedGuard for x264 benchmark in
the presence of three core failures.
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Figure 17: Dynamic behavior of SpeedGuard for bodytrack bench-
mark in the presence of three core failures.
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Figure 18: Dynamic behavior of SpeedGuard for x264 benchmark in
the presence of frequency scaling.
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Figure 19: Dynamic behavior of SpeedGuard for bodytrack bench-
mark in the presence of frequency scaling.

7.2.1 Frequency scaling in x264
Figure 18 shows the behavior of x264 during a sudden change

in processor frequency. The “No perforation” curve shows that this
sudden decrease in computing power causes performance to fall to
about 65% that of the baseline system by heartbeat 120. Perfor-
mance remains at this level until the frequency increases and then
it returns to the expected level. In contrast, SpeedGuard is able to
respond to the frequency change by dynamically perforating loops.
As shown in the chart, when the frequency change occurs Speed-
Guard perforates three loops and the performance returns to the
desired value by heartbeat 160. When the frequency is raised to
its original value, SpeedGuard quickly reduces the number of per-
forations so that by heartbeat 400, the program is again running
unperforated code.

As in the core failure experiment, SpeedGuard dynamically ad-
justs perforation level to meet the application’s performance goals
with no measurable change to the quality of the video. In this case,
SpeedGuard only increases the bitrate of the encoded video by 2%.
Again, for a real-time encoder, this small and temporary increase
to bitrate might be preferable to a few seconds of choppy video.

7.2.2 Frequency scaling in bodytrack
Figure 19 shows the behavior of bodytrack during a sudden

change in processor frequency. The “No perforation” curve shows
that the sudden loss of processing power causes performance to fall
to about 60% that of the baseline system by heartbeat 85. Perfor-
mance remains at this level until the frequency increase allows it
to return to the desired level. In contrast, SpeedGuard is able to
respond to the frequency change by dynamically perforating loops.
As shown in the chart, when the frequency change occurs Speed-
Guard perforates three loops and the performance returns to the
desired value by heartbeat 100. When the frequency increases,
SpeedGuard quickly reduces the number of perforations so that by
heartbeat 250 bodytrack is again running unperforated code.

As in the core failure experiment, SpeedGuard is able to meet
bodytrack’s performance goals with only a small degradation of its
ability to track the body through the scene. Perforation causes some
inaccuracies in the position of the subject’s forearm, but we have al-
ready identified several applications where this might be preferable
to failing to return any result promptly.



7.3 Summary of Fault Tolerance Experiments
These experiments demonstrate several important features of the

SpeedGuard system. First, they demonstrate how the performance
gains found by SpeedPress can be converted into robustness in the
face of errors. Second, this study highlights SpeedGuard’s flexibil-
ity to respond to different types of faults without changing the ap-
plication code or even the compiled binary. SpeedGuard achieves
this flexibility by detecting performance changes instead of particu-
lar faults, meaning that the system can respond to any environmen-
tal change that causes a variation in performance. Third, these re-
sults are achieved with no application specific fault tolerance code
and no additional burden on the user apart from the required calls
to the heartbeat interface.

8. RELATED WORK
Trading accuracy of computation for other optimizations is a

well-known technique. It has been shown that one can trade off

accuracy for performance [22], robustness [22], energy consump-
tion [10, 31, 22] and fault tolerance [10, 31, 22]. We note that de-
velopers have, for years, manually navigated performance/accuracy
tradeoffs. For example, the Search benchmark in the Jade bench-
mark set [9, 25] was manually optimized to use more efficient, less
accurate, but still acceptably accurate alternate implementations of
mathematical functions such as sqrt, sin, and cos.

8.1 Software Techniques
Rinard [22, 23] presents a technique for automatically deriving

empirical probabilistic distortion and timing models that character-
ize the accuracy/performance tradeoff space of a given application.
To the best of our knowledge, this research is the first to propose
and infer such models. Given a program that executes a set of tasks,
these models characterize the effect of skipping task executions on
the performance and execution time. The results show that skip-
ping tasks can often significantly reduce the execution time (be-
cause the program performs less computational work) while pro-
ducing acceptable changes in the output. Note that because the
execution time reductions correspond directly to reductions in the
amount of computational resources required to perform the compu-
tation, execution time reductions correspond directly to energy re-
ductions. The research evaluates the use of these models to tolerate
task failures (or failures of the underlying computational platform
executing the task), purposefully discard tasks to reduce the execu-
tion time and/or the energy consumption, and eliminate idle time
at barriers terminating parallel phases, all while keeping the result-
ing output distortion within acceptable bounds. Many of the tasks
in the reported benchmark set execute subsets of loop iterations.
Discarding such tasks has essentially the same effect as loop per-
foration. This research was the original inspiration for the research
presented in this paper.

In comparison, the primary advantage of loop perforation is its
ability to operate on applications written in standard languages with-
out the need for the developer to identify task boundaries. This pa-
per also demonstrates how to use loop perforation in combination
with dynamic performance monitoring techniques and fine-grain
control over skipped computation to enable applications with real-
time performance goals to adapt to events such as core failures and
clock frequency changes.

Researchers have also developed systems that allow developers
to provide multiple different implementations for a given piece of
functionality, with different implementations occupying different
points in the performance/accuracy trade off space. Petabricks [3]
is a new parallel language and compiler that developers can use
to provide multiple alternate implementations of a given piece of

functionality, each with potentially different accuracy/performance
characteristics. Given these alternatives, the compiler and runtime
system can dynamically select and create an optimized hybrid al-
gorithm that is tailored for solving a particular problem given input
characteristics (e.g. size) and environmental constraints such as the
level of available parallelism (e.g. number of cores).

Green [5] also provides constructs that developers can use to
provide alternate implementations for given pieces of functional-
ity, with the alternate implementations typically offering better per-
formance or energy consumption characteristics but less accuracy.
One of the supported alternate implementations is loop approxima-
tion, or loops that exit early, effectively skipping the remaining con-
tiguous set of loop iterations, an optimization similar to our trun-
cation perforation. The Green framework requires programmers to
annotate their code using extensions to C and C++ and to provide
additional functions needed by the Phoenix compiler framework.

In contrast to these techniques, this paper presents an automated
solution that works directly on original unmodified applications.
There is no need for the developer to provide multiple implemen-
tations of any piece of functionality, no need for the developer
to understand the characteristics of the application and its imple-
mentation to identify which approximations are likely to provide
reasonable performance gains with acceptable accuracy, and no
need to understand or modify the source code of the application
at all. In contrast, our implemented system automatically gener-
ates a large performance/accuracy tradeoff space and automatically
searches that space to find points that simultaneously meet both
performance and accuracy goals.

We also present the SpeedGuard framework, which, combined
with the Application Heartbeats framework, enables our system to
automatically control the amount of applied perforation to enable
effective automatic responses to a wide variety of environmental
changes that affect performance and energy consumption, includ-
ing dynamic changes in the clock frequency.

8.2 Hardware Techniques
Considerable research has gone into exploring how to trade off

accuracy for reduced energy consumption. George et al [15] show
how circuit level errors can be ignored if the application level im-
pact is low and if such a tradeoff leads to considerable gains in
energy efficiency. Chakrapani [10] extends that work with a more
detailed theoretical model of the tradeoff between energy consump-
tion and error induced by propagation delay in circuits that imple-
ment arithmetic operations that can be exploited to gain energy
savings. Deviation-tolerant computation [31] present an analysis
of how one can trade off correctness, in the presence of hardware
faults, for performance or energy efficiency. Their method for trad-
ing accuracy for performance models how altering an external sys-
tem feature (e.g. circuit noise margins) may result in a performance
increase at the cost of higher error probability.

These techniques are complementary to our work as they oper-
ate at a different scope. They show to trade performance for ac-
curacy at a bit, or sub-word level (e.g. simple ripple-carry adders)
while our approach deals with performance/accuracy trade-offs at
a the level of loops and function calls. Additionally, our method
for trading off accuracy relies on skipping the execution of code
rather than tolerating errors at the hardware level. Finally, we have
implemented our techniques in a real system including both the
SpeedPress compiler and SpeedGuard runtime system.

8.3 Feedback-Driven Optimization
One way to view code perforation is an optimizing compiler that

examines the accuracy-performance space to drive program opti-



mizations. Optimizing programs based on run time profiling is
a well studied area [30]. Feedback-directed optimization (FDO)
is general term used to describe optimization techniques that al-
ter a program’s execution based on information gathered at run
time [30]. FDO techniques range from static to dynamic. At the
static end of the spectrum, run time profiling information is used
to produce new, optimized, binaries (recompilation) [11, 29, 17].
Fully dynamic hardware [26, 20] and software techniques[6, 12, 4]
are at the other end of the spectrum. All of these techniques oper-
ate under the constraint that the transformed program must produce
the identical output as the original program. Code perforation, in
contrast, is designed to produce programs whose outputs may dif-
fer within acceptable distortion bounds. This additional freedom
enables code perforation to, in general, deliver larger performance
increases.

8.4 Fault Tolerance
Recently, several techniques that trade off correctness for sys-

tem availability have been proposed. Examples include failure-
oblivious computing [24], error virtualization [27, 28], DieHard [7],
acceptability-oriented computing [21] and data-structure repair [13].
These techniques exploit the concept of software elasticity: the
ability of regular code to recover from certain types of failures
when low-level faults are masked by the operating system (OS)
or by appropriate instrumentation. When applied to fault tolerance,
these techniques are useful for recovering from failures that cause
memory errors but cannot respond to failures that cause system per-
formance degradation. Our approach also harnesses software elas-
ticity, but instead responds to errors affecting system performance
rather than memory.

9. CONCLUSIONS
We have presented and evaluated a technique, code perforation,

for automatically enabling applications to increase their performance
on demand while keeping any resulting output distortion within ac-
ceptable bounds. Our experimental results show that this technique
can enable applications to deliver acceptable results to users more
quickly. It can also enable applications to automatically adapt to
meet real-time performance goals in the face of disruptive events
such as core failures, clock speed changes, and increased loads.

We acknowledge that code perforation is not appropriate for all
possible applications. But within its target class of applications, our
results show that it can automatically deliver an important capabil-
ity that dramatically increases the ability of systems to deal suc-
cessfully with complex and dynamically changing combinations of
performance demands, failures, and accuracy requirements.
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