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ABSTRACT

We present a new technique for enabling computations to survive
errors and faults while providing a bound on any resulting output
distortion. A developer using the technique first partitions the com-
putation into tasks. The execution platform then simply discards
any task that encounters an error or a fault and completes the com-
putation by executing any remaining tasks. This technique can sub-
stantially improve the robustness of the computation in the face of
errors and faults. A potential concern is that discarding tasks may
change the result that the computation produces.

Our technique randomly samples executions of the program at
varying task failure rates to obtain a quantitative, probabilistic model
that characterizes the distortion of the output as a function of the
task failure rates. By providing probabilistic bounds on the distor-
tion, the model allows users to confidently accept results produced
by executions with failures as long as the distortion falls within ac-
ceptable bounds. This approach may prove to be especially useful
for enabling computations to successfully survive hardware failures
in distributed computing environments.

Our technique also produces a timing model that characterizes
the execution time as a function of the task failure rates. The com-
bination of the distortion and timing models quantifies an accu-
racy/execution time tradeoff. It therefore enables the development
of techniques that purposefully fail tasks to reduce the execution
time while keeping the distortion within acceptable bounds.

1. INTRODUCTION

With standard program execution platforms, an error anywhere
within the computation may propagate to cause the entire compu-
tation to fail. Such failures can be problematic because they deny
the user access to the output that the computation would otherwise
have provided.
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We propose a new approach to handling such errors. The de-
veloper starts with a program written in a standard programming
language such as C or Java. He or she then uses a metalanguage (in
our case, the Jade metalanguage [13]) to partition the computation
into tasks. When a task encounters a software error or hardware
fault, the execution platform simply discards the task, then con-
tinues on to complete the computation by running the remaining
tasks.

1.1 Distortion and Timing Models

A potential complication is that discarding tasks may unaccept-
ably change the output. We address this complication by develop-
ing a probabilistic distortion model that characterizes the distortion
of the output as a function of the task failure rates in the compu-
tation. Instead of confronting the user with an output that has un-
known distortion, the model provides a probabilistic bound on the
distortion. The user can then examine this bound to determine if
the output satisfies the accuracy requirements within an acceptable
level of certainty.

In addition to the distortion model, we also provide a timing
model that characterizes the execution time as a function of the task
failure rates. In many cases higher task failure rates correspond to
lower execution times — when a computation discards tasks, it of-
ten performs less work. The presence of both a distortion model
and a timing model enables the deployment of techniques that pur-
posefully fail tasks to reduce the execution time while keeping the
resulting distortion within acceptable bounds.

1.2 Basic Approach

Our basic approach consists of the following steps:

e Task Decomposition: The developer uses the metalanguage
to identify rask blocks in the program. Each task block con-
sists of a block of code whose execution corresponds to a
task in the computation. Note that a given task block may
execute many times during the course of a computation and
may therefore generate many tasks into the computation.

e Baseline: We obtain several sample inputs for which the pro-
gram is known to generate correct output. We run the pro-
gram on those inputs and record the outputs that it generates.

e Criticality Testing: We configure the execution platform to
randomly fail executions of selected task blocks at target fail-
ure rates. We then select each task block in the program in
turn, fail executions of that task block at a targeted rate, and
observe the resulting output distortion. If the failures pro-
duce unacceptable distortion, we mark the task block as crit-
ical, otherwise we mark the task block as failable.



o Distortion Model: Given a set of failable task blocks, we
run repeated trials in which we randomly select a target task
failure rate for each failable task block, execute the compu-
tation, then record both the observed task failure rates and
the resulting output distortion. We then use regression [7] to
obtain a probabilistic model that estimates the distortion as a
function of the task failure rates.

e Timing Model: For each trial we also record the execution
time of the program. We then use regression to obtain a
model that estimates the execution time as a function of the
task failure rates.

We have applied this approach to several benchmark applications
selected from the Jade benchmark suite [13]. Our results show that
the models are quite accurate (they have good statistical properties
and usually explain almost all of the observed variation in the dis-
tortion and execution time data) and that the estimated distortion
and confidence intervals are small enough to provide useful distor-
tion bounds in practice. And it is possible to use models developed
on one set of inputs to accurately predict both timing and distortion
properties of executions on other inputs.

1.3 Potential Uses

We see several potential uses for our models. Some of these
uses simply make existing programs more robust against errors and
faults. Other uses enable developers to deliberately introduce fail-
ures or accept the presence of errors to achieve other goals.

1.3.1 Hardware Faults

The distortion model can provide distortion bounds for tech-
niques that make software more robust against hardware faults by
discarding tasks that experience such faults. We anticipate tran-
sient hardware faults for which the recovery mechanism is simply
to discard the task, then continue on to execute other tasks on the
same hardware platform. We also anticipate tolerating partial fail-
ures within a distributed computing platform hosting a distributed
(and potentially parallel) execution of the program.

1.3.2  Software Errors

Another potential use is to provide distortion bounds for tech-
niques that tolerate otherwise fatal software errors by discarding
tasks that experience such errors. Once developers experience the
ability of this technique to provide tight distortion bounds for com-
putations that acceptably recover from inadvertent software errors
by discarding tasks, they may start to consciously exploit the tech-
nique by purposefully omitting complex code otherwise required
to handle rare special cases. We are already aware of several sys-
tems that apply such approaches on an ad-hoc basis with no distor-
tion bounds [11, 5]. We anticipate that the availability of distortion
bounds will make such approaches more acceptable and therefore
more widely used. The potential benefits include reduced develop-
ment time and simpler delivered software systems.

1.3.3 Reducing Computation Time and Resources

It is possible to analyze the distortion and timing models to ob-
tain strategies that optimally fail tasks to obtain the maximum ex-
ecution time reduction while minimizing the resulting output dis-
tortion. Users with large computations may use these strategies to
reduce the amount of time or hardware resources required to obtain
a desired result while staying within appropriate accuracy bounds.

The timing models assume that failed tasks consume no execu-
tion time. This assumption does not hold if the task failures are
caused by software errors and/or hardware faults — in this case,

tasks may execute for some time before failing. The primary antic-
ipated use of the timing models is therefore to enable strategies that
manage the time/accuracy tradeoff by preemptively failing tasks
before they begin execution.

1.3.4 Assumptions and Fault Model

Because our statistical models use the number of failed tasks to
predict the distortion, they are appropriate for situations in which
there is no correlation between the likelihood that a task will fail
and the effect of that failure on the distortion. If there is such a
correlation, the statistical model may not be accurate. This could
happen with hardware faults, for example, if tasks that take a longer
time to execute (and therefore have a greater chance of experienc-
ing a hardware fault) have a larger effect on the final result. It
could happen with software errors, for example, if the magnitude
of a task’s contribution to the final result is correlated with the like-
lihood that the task will encounter a software error. As with any
statistical technique, one must understand the underlying assump-
tions to appropriately apply the technique to the situation at hand.

We obtain our statistical models by sampling executions of the
program running on several different training inputs. We anticipate
usage scenarios in which these models are then used to provide
distortion bounds estimates for the program running on (different)
production inputs. Our approach is therefore appropriate for situ-
ations in which the effect of task failures on the distortion is not
systematically different for the production inputs as compared with
the training inputs.

1.4 Scope

We have implemented a system that automatically produces dis-
tortion and timing models and applied this system to a collection of
programs written in the Jade implicitly parallel programming lan-
guage [13]. Based on our experience with these programs, we have
identified a general computational pattern that interacts well with
our approach. Many scientific computations first generate many
contributions to a final result, then combine the contributions to
obtain the result. This pattern is also present in many graphics and
information retrieval programs [11, 5].

If each task either generates or combines contributions, the net
effect of task failures is simply to discard some of the contribu-
tions. Our results indicate that the distortion associated with dis-
carding some of these contributions is often quite small and that
our approach is quite effective at enabling computations that exhibit
this pattern to execute through task failures to produce outputs with
good distortion bounds. We anticipate that our approach will also
work well for other computations that have this general pattern.

Finally, we note that our technique obtains the accuracy and tim-
ing models by sampling many different executions of the program
running on a several training inputs. We anticipate usage scenar-
ios in which this sampling overhead is profitably amortized over
the production runs, either because the production runs take sub-
stantially longer to execute than the training runs or because the
program will be used for many more production runs than training
runs. It may also be feasible to perform the training runs during a
lead time between when the program is developed and when it is
deployed into production.

1.5 Contributions
This paper makes the following contributions:

e Basic Concept: It introduces, for the first time, the concept
of using continuous distortion and timing models to charac-
terize the behavior of software systems in the face of failures.



e Methodology: It shows how to apply the basic concept to
existing programs by:

— Task Decomposition: using a metalanguage to divide
the computation up into tasks,

— Criticality Testing: using random sampling to find crit-
ical tasks whose failures impose unacceptable distor-
tion costs, and

— Distortion and Timing Models: using random sam-
pling on the failure rates of the remaining failable tasks
in combination with regression to obtain distortion and
timing models that characterize the behavior of the pro-
gram in the face of task failures.

e Evaluation: It presents our experience applying our tech-
nique to several scientific computations. Our results show
that we are able to obtain accurate models that precisely cap-
ture the distortion and timing responses of these computa-
tions as a function of the task block failure rates.

e Characterization: We analyze the underlying properties of
the programs that are responsible for their behavior and iden-
tify a general computational pattern that interacts well with
our approach.

The remainder of the paper is structured as follows. In Section 2
we provide an example that illustrates how our technique opera-
tions. Section 3 presents the methodology we use to obtain our
models. Section 4 presents our experience applying our technique
to a set of scientific computations. We present related work in Sec-
tion 5 and conclude in Section 6.

2. EXAMPLE

Figure 1 presents a simple Jade program that we use to illus-
trate our approach. This program computes the sum of n numbers,
storing the result in the global variable sum. The task block on
lines 8 and 9 uses the Jade withonly construct to specify that
the computation of each number and its accumulation into sum is
a task. The withonly construct on line 8 uses the access speci-
fication operations rd (&sum) and wr (&sum) to specify that the
code in the body of the task (in this case the computation of the
numbers and their accumulation into sum) may, when it executes,
read and/or write sum. We assume that the add procedure is part
of a larger program that invokes add with sum equal to O, then
prints the value of sum as the result of the computation.

1: int shared sum;

5: void add(int n) {

6 int i;

7: for (i = 0; i < n; i++) {

8 withonly { rd(&sum); wr(&sum); }
9 do (i) { sum = sum + f£(i); }

10 }

11: }

Figure 1: Example Jade Program

When it executes this program, the Jade implementation creates
a new task for every execution of the task block on lines 8 and
9. It dynamically analyzes the data dependences between tasks to
exploit any available concurrency; Jade implementations exist for
a variety of parallel computing platforms [13].

To support the development of the distortion and timing models,
we modified the Jade implementation to accept a target task failure
rate for each task block. When the program runs, the Jade imple-
mentation randomly fails the corresponding tasks at the specified
rates.

To construct the distortion model, our technique first runs the
program on several inputs for which it is known to produce correct
output. It records the output, then runs a sequence of trials that
randomly fail executions of each task block at a randomly selected
failure rate. For each trial it records the output of the computation
and the actual task failure rate for each task block.

To quantify the impact of the failures on the output, the technique
computes the distortion associated with each trial. In our example
the distortion is simply |(0 — 6) /0|, where o is the correct output
and o0 is the observed output from the trial with failures. Dividing
the difference o — 0 by o makes it possible to meaningfully compare
distortions from executions with different correct outputs.

The result of the sampling phase is a set of observations z, d,
where x is the actual task failure rate for the task block in the pro-
gram and d is the observed distortion. Our technique takes this
set of observations and uses regression [7] to obtain a linear model
d(z) = co[+eo] + c1[%e1]x of the distortion. Here co and ¢; are
the regression coefficients and ep and e; provide the confidence
bounds for these coefficients. For the program in our example, the
regression produces the following distortion model.

d(z) = 0[£0.0002] 4 1.0[+0.0007]z

In this model cp = 0, which correctly estimates that there should
be no distortion if there are no task failures. The coefficient ¢c; = 1,
which indicates that every increase in the task failure rate produces
the same increase in the distortion. So, for example, an increase
of 10% in the task failure rate would produce an increase in the
distortion of 0.10.'

In addition to the model, the regression algorithm provides a va-
riety of statistics that evaluate how well the model fits the data. In
our example R? is 1, which means that the model perfectly ex-
plains the variation in the data. Finally, given a task failure rate
z, the regression can provide a confidence bound e around the es-
timated distortion co 4+ ciz. In our example the maximum 95%
confidence bound over all of the 2064 sampled task failure rate
points is 0.0025, which provides a tight confidence interval around
the estimated distortion.

We anticipate the following usage scenario. The user has ob-
tained the model and now runs the program on another input. The
program comes back with an output 6. It also informs the user that
several tasks failed during the execution, and that the actual failure
rate was «x for that execution. The user plugs the task failure rate
into the model to get an estimated distortion co + c¢ix and confi-
dence bound e. The user then evaluates the distortion and confi-
dence bound to determine if, with high enough likelihood, the dis-
tortion is acceptable. Assume, for example, that the user runs the
example program and obtains the output 791792064 at an observed
task failure rate of 0.01 or 1%. The estimated distortion is there-
fore 0.01. Adding the confidence bound 0.0025 gives 0.0125 as a
reasonable upper bound on the distortion. Applying the distortion
equation yields an expectation that the correct output should occur
within the range [782016853,801814748]. The correct output is, in
fact, 799980000.

'Tt turns out that for this example it is possible to apply the bias
compensation technique discussed in Section 3.8 to obtain an esti-
mator with an expected distortion of 0.0 for task failure rates within
the sampled range of 0.0 to 0.75. This technique enables the pro-
gram to acceptably tolerate much higher task failure rates.



3. METHODOLOGY

We obtain and evaluate our distortion model and timing model
for each program as follows.

3.1 Failure-Free Executions

Our methodology applies to programs that produce an output of
the form o1, . . . , om, where each output component o; is a number.
We obtain several test inputs for which the program is known to ex-
ecute without failures, run the program on these inputs, and record
the correct output 01, . . ., 0, for each input.

3.2 Distortion Definition

In subsequent steps we run the program with failures and mea-
sure how much the failures affect the accuracy of the outputs. Given
a correct output o1,...,0, and an observed output 01, ..., 0m
from an execution with failures, the following quantity d, which
we call the distortion, measures the accuracy of the observed out-
put:

m
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The closer the distortion d is to zero, the less the failures distort
the output.

Note that because each difference o; — 0; is scaled by the cor-
responding correct output component o; and because the sum is
divided by the number of output components m, it is possible to
meaningfully compare distortions d obtained from executions on
different inputs even if the inputs cause the failure-free executions
of the program to produce outputs with different numbers of com-
ponents m and different correct component values o0;.

Note that the distortion equation weights each output value o;
equally. It is possible to use a set of weights w; to generalize the
distortion equation for programs whose outputs are not all equally
important. Each weight w; would capture the importance of the
corresponding output o0;:

Oi—ai
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where the w; satisfy m = Y 7" | w;.

3.3 Criticality Testing

It turns out that some programs have task blocks that must always
execute without failures for the program to produce acceptably ac-
curate output. We experimentally detect these critical task blocks
as follows. We first configure the underlying execution engine (in
our case the Jade runtime system) to randomly fail executions of
a selected task block at a specified rate (our criticality testing exe-
cutions fail 10% of the executions of the selected task block). We
then select each task block in turn and run the program at least ten
times with the execution engine randomly failing that task block
at the specified rate. If any of these runs does not produce any
output at all (typically because the program failed) or if the mean
distortion from all of the runs is larger than the specified acceptable
distortion for criticality testing (we use an acceptable distortion of
0.10), we identify the task block as a critical task block that must
execute without failure. Otherwise, we consider the task block to
be a failable task block. The purpose of the remaining steps is to
characterize the effect that failures of failable task blocks have on
the acceptability of the outputs.

3.4 Distortion Sampling Runs

We next run a set of trials in which we randomly select a target
failure rate for each failable task block, run the program with the
execution engine randomly failing executions of each task block at
its target failure rate, then record the distortion and actual failure
rate for each failable task block for that run. If we have n failable
task blocks, the result is a set of observations !, . .., z}, d*, where
d? is the distortion and z¢, . . ., %, are the actual failure rates for the
n failable task blocks in the 7’th trial.

‘We run multiple sampling runs for each of our test inputs. In our
experiments the target failure rates for our distortion sampling runs
range from O (no execution of the task block fails) to 0.75 (three out
of every four executions of the task block fail). The number of sam-
pling runs for each test input varies between approximately 500 and
5000 depending on the program. We simply set up a script that re-
peatedly executed each program on each test input, using a pseudo-
random number generator to select the target failure rates for each
run. While we did not attempt to closely control the amount of time
spent performing the distortion sampling runs, we typically let the
script run for about a day for each program before collecting the
data and computing the distortion and timing models.

3.5 Distortion Model

Given the results from the distortion sampling runs, we use mul-
tiple linear regression [7] to compute a linear least-squares distor-
tion model of the form

d(:cl, .oy Tn) = co[Eeo] + Z S E=E

=1

where the c; are the least-squares coefficients for the regression and
the e; provide the confidence intervals for these coefficients (we use
95% confidence intervals in this paper). Given failure rates z; for
all of the failable task blocks, this model produces a distortion esti-
mate d (z1,...,zn) of the expected accuracy of the result produced
by a computation with task block failure rates 1, . .., Zy.

The regression also produces an F value that assesses how well
the model predicts the data and an R? value that indicates how
much of the variation in the data the model accounts for. More-
over, given a specific point x1, . . .,  in the failure rate space, the
regression can produce a confidence interval around the distortion
estimate d(zl, ..., Ty) at that point. It is possible to obtain confi-
dence intervals for whatever alpha level one desires; in this paper
we use an alpha level of 0.05, which produces a 95% confidence
interval. We use the SAS system to compute the regression [7].

3.6 Timing Model

We also observe the running times of the various executions and
use these running times to similarly obtain a timing model that
captures the effect of failures on the running time. To obtain this
model, we first run the program several times without failures to
obtain a mean failure-free execution time ¢ for each input. We then
divide the observed running times ¢* from the distortion sampling
runs to obtain a scaled time observation s = '/t for each exe-
cution. This scaling makes it possible to meaningfully compare
timing results from executions on different inputs with different
failure-free execution times. Finally, we use multiple linear regres-
sion to obtain a least-squares timing model of the form

n

$(x1,...,xn) = co[Leo] + Z ci[tes)xs

i=1

for the scaled running time $(z1, . .., ) of the program as a func-
tion of the task block failure rates x1, ..., x,. This model is use-



ful for calculating expected time/accuracy trade-offs and can, in
some circumstances, guide a strategy that purposefully fails tasks
to move the execution toward a more desirable point in this trade-
off space.

3.7 Using the Model

One goal of the distortion model is to allow a user running the
program in the presence of failures to obtain an estimate of how the
failures in that execution affected the accuracy of the result that the
program produced. In particular, the user would take the observed
failure rates x1,...,xn, apply the distortion model to obtain an
estimated distortion d(zl, ..., ) along with its associated confi-
dence interval to evaluate whether the failures were likely to have
unacceptably distorted the result. In this scenario, several issues
are likely to be of interest:

e Distortion: How quickly does the distortion grow as a func-
tion of the task block failure rates? We evaluate this issue by
examining the model coefficients ¢;. The smaller the model
coefficients, the less the results are affected by failures of the
corresponding task blocks.

e Bounds: How small are the confidence intervals? We eval-
uate this issue by computing the minimum and maximum
sizes of the upper confidence intervals at all of the 1, ... xy
points observed during the distortion sampling runs. For a
user to accept a distorted result, both the distortion estimate
and the upper confidence interval must be small enough to
make the likelihood that an unacceptably large actual distor-
tion has occurred remote enough for the user to accept. The
upper confidence interval provides the appropriate bound for
this purpose — the distortion is inherently bounded below by
zero and becomes more acceptable the closer it gets to this
bound.

e Predictive Power: We use our test inputs to obtain the re-
gression model. We anticipate that users will apply the model
to executions of the program running on other inputs. The is-
sue is whether a model derived from executions on one set of
inputs can accurately predict the distortion for other inputs.

We evaluate this issue by applying a model derived from ex-
ecutions on some of our inputs to executions on other in-
puts. Specifically, we partition our test inputs into two cat-
egories: learning inputs and unseen inputs. We use the exe-
cutions on the learning inputs to obtain a model, then calcu-
late the proportion of observed executions on unseen inputs
whose distortion d falls below the upper confidence interval
of the distortion estimate d(zl, ..., Ty) from the learning
input model. If the proportion of executions that falls be-
low the upper confidence interval is consistent with the alpha
level of that confidence interval, the model has good predic-
tive power.

3.8 Bias Definition and Use

The distortion measures the absolute error induced by a set of
failures. It is also sometimes useful to consider whether there is any
systematic direction to the error. The following quantity b measures
the bias of the outputs:

1 &0 — 6;
_ 1 — Uz
b= T

i=1
Note that this is the same formula as the distortion with the ex-
ception that it preserves the sign of the summands. Errors with dif-

ferent signs may therefore cancel each other out in the computation
of the bias instead of accumulating as for the distortion.

If there is a systematic bias, it may be possible to compensate for
the bias to obtain a more accurate result. Consider, for example, the
special case of a program with a single output component o. If we
know that the bias at a certain point is b, we can simply divide the
observed output 6 by (1 — b) to obtain an estimate of the correct
output whose expected distortion is 0.

The reasoning in this example generalizes to handle programs
with multiple output components o1, . . ., 0, — the key is to gen-
eralize our methodology to obtain a separate distortion and bias
model for each different output component o,. It is then possible
to correct each output component individually to eliminate the bias
for that component. If the output components do, in fact, exhibit a
systematic bias in the face of failed task blocks, the primary obsta-
cle to applying this technique is the number of output components.
For programs with large numbers of output components it may be
difficult to perform the number of trials required to obtain a useful
model of the distortion and bias for each individual output compo-
nent.

4. EXPERIMENTAL RESULTS

We apply our methodology to four scientific computations:

e Water: Water evaluates forces and potentials in a system of
water molecules in the liquid state. Water is derived from the
Perfect Club benchmark MDG [2] and performs the same
computation.

e Search: Search [4] is a program from the Stanford Electrical
Engineering department. It simulates the interaction of sev-
eral electron beams at different energy levels with a variety of
solids. It uses a Monte-Carlo technique to simulate the elas-
tic scattering of each electron from the electron beam into the
solid. The result of this simulation is used to measure how
closely an empirical equation for electron scattering matches
a full quantum-mechanical expansion of the wave equation
stored in tables.

e SOR: SOR uses an iterative method to solve a set of spatial
partial differential equations [18]. It stores the state of the
system in several two-dimensional arrays. On every itera-
tion the solver recomputes each element of the array using a
standard five-point stencil algorithm. The new value of the
element depends on its old value and on the values of the four
elements above it, below it, to the left of it and to the right of
it. The solver terminates when the differences between the
old values and the new values drop below a given threshold.

e String: String [10] uses seismic travel-time inversion to con-
struct a two-dimensional discrete velocity model of the geo-
logical medium between two oil wells. Each element of the
velocity model records how fast sound waves travel through
the corresponding part of the medium. The seismic data are
collected by firing non-destructive seismic sources in one
well and recording the seismic waves digitally as they ar-
rive at the other well. The travel times of the waves can be
measured from the resulting seismic traces. The application
uses the travel-time data to iteratively compute the velocity
model.

In addition to these computations, the Jade benchmark suite con-
tains Panel Cholesky, which performs a Cholesky factorization of a
sparse matrix, and Volume Rendering, which generates a sequence



of images of a set of volume data. We do not report results for Panel
Cholesky because it operates on synthetic data rather than the ac-
tual data in its benchmark sparse matrices. Any distortion results
would therefore be meaningless for this computation. We were not
able to run Volume Rendering on our current computational plat-
form because of input data incompatabilities. Other than these two
applications, we report experimental results for all computations in
the Jade benchmark suite.

4.1 Water

‘We ran Water on four different inputs; the inputs vary in the num-
ber of molecules they cause Water to simulate. Specifically, the
inputs produce simulations of 343, 512, 729, and 1000 molecules.
Water calculates several values of potential interest, including the
total energy, kinetic energy, and potential energy. We choose to
measure the distortion of the total energy (in part because it in-
cludes contributions from all of the other partial energy calcula-
tions); it would be possible to extend this measure to include the
different partial energy values explicitly.

4.1.1 Task Blocks and Criticality Testing

Water has four task blocks. Executions of the first task block
compute the intermolecular forces between pairs of molecules, stor-
ing their intermediate results into blocks of storage allocated for
that purpose. Executions of the second task block sum up all of
the intermediate results to produce the final intermolecular forces.
Similarly, executions of the third task block compute the inter-
molecular contributions to the potential energy, storing intermedi-
ate results into blocks of storage allocated for that purpose. Exe-
cutions of the fourth task block sum up the intermediate results to
produce the final intermolecular potential energy.

Our criticality testing experiments revealed no critical task blocks
— all task blocks produce a mean distortion of less than 0.1 when
failed at the target 10% rate during our criticality testing runs.

4.1.2 Distortion Models

Figure 2 presents the distortion models for Water. The first model
is for 343 molecules, the second for 512, et cetera; x1 is the failure
rate for the first task block, T2 is the failure rate for the second task
block, et cetera. The model dcomp is the composite model obtained
by combining the observations from 343, 512, and 1000 inputs (see
Section 4.1.3). We present each regression coefficient in the form
c[£e], where c is the coefficient itself and [te] provides the 95%
confidence bounds for that coefficient. The F values for all of these
models are in the tens of thousands, the corresponding p values are
less than 0.0001, and the R? values are above 98%, which indicates
that the model explains over 98% of the variation in the data.’

The coefficients are relatively large, which indicates that the dis-
tortion increases relatively quickly in the face of failures. For exam-
ple, the coefficient for x3 is either 0.55 or .56 for all of the models.
So, for example, a 10% failure rate for task block 3 results in ap-
proximately 0.05 increase in the estimated distortion. If the failure
rate is 50% for all task blocks, the estimated distortion is approxi-
mately 0.6 — in other words, the observed output with failures is
estimated to be more than a factor of two different from the correct
output! The models would therefore appear to indicate that the vast
majority of the tasks in Water must execute without failure for the
program to produce an acceptable output. Note, however, that Sec-
tion 4.1.4 describes a way to correct the bias in the output to obtain
a corrected output with an estimated distortion of zero. With this
correction, Water can tolerate much higher task block failure rates.

2See a standard statistics book for definitions and more detailed
interpretations of these quantities [7].

Intuitively, one would expect the y intercept values co in the dis-
tortion models to be zero — after all, there should be no distortion
at all with no failures. While the y intercept values cg are all close
to zero, they are not exactly zero. The reason for this anomaly is
not immediately clear. A slight non-linearity in the distortion as a
function of the task failure rate (in which the distortion increased
slightly more than linearly for small task failure rates and slightly
less than linearly for large task failure rates) would explain the re-
sults.

Note that the models are close to identical for all of the differ-
ent inputs, which (because the models are linear) indicates that the
models do not depend on the input to the program. It should there-
fore be feasible to use models developed from one set of inputs to
predict distortions for other inputs.

4.1.3  Predictive Power and Confidence Bounds

We evaluate the predictive power of our technique by obtain-
ing a composite model for our learning inputs (we selected 343
molecules, 512 molecules, and 1000 molecules) and applying the
model to the observations for our unseen input (729 molecules,
chosen arbitrarily as the third out of four inputs). Specifically,
we concatenated our observations from our learning inputs, used
regression to obtain a composite model, then calculated the num-
ber of observations x1, . . . , £4, d from the distortion sampling runs
for 729 molecules whose observed distortion d fell above the up-
per 95% confidence bound of the distortion estimate d(:cl, ceeyTa)
from the composite model. Of the 3305 observations from the dis-
tortion sampling runs for the unseen input with 729 molecules, 99
(or approximately 3%) fell above the upper 95% confidence inter-
val from the composite model, which indicates that the composite
model was able to successfully predict the distortion behavior of
the unseen input.

A final question is the size of the confidence bounds. To address
this question we used the composite model to obtain 95% upper
confidence bounds for all of the 13219 sampled task block failure
points x1, ..., x4 in the distortion sampling runs. The maximum
upper confidence bound was 0.0586. Given a task block failure
point 21, . . ., 24, the quantity d(z1, . . ., z4) + 0.0586 provides an
appropriate upper bound for the actual distortion.

For small task failure rates it is possible to obtain a tighter con-
fidence bound. First, we discarded all observations x1,...,x4,d
with a task failure rate x1, ..., z4 greater than 1%. We next used
regression on the remaining observations to obtain another model
(the 1% failure rate model) for this region of the task failure rate
space. We then used the 1% failure rate model to obtain 95% upper
confidence bounds for all of the remaining 3509 sampled task block
failure points with failure rates x1, . . . z4 less than or equal to 1%.
The maximum 95% confidence bound for any of these remaining
sampled task block failure points is 0.0082. An appropriate upper
bound on the distortion for points 1, ..., x4 Where x1, ..., x4 are
all less than or equal to 1% is therefore d(0.01, . . ., 0.01) 4-0.0082
or 0.03.

4.1.4 Bias Correction

It turns out that, for every execution of Water, the bias is the same
as the distortion (which implies that the bias estimator B(xl, e, Ta)
equals the distortion estimator d(z1, . . ., 4)). Because Water has
a single output, it is possible to correct for the bias by simply divid-
ing the observed output by (1 — d(z1, . .., 4)) to obtain an output
estimator with an expected distortion of zero and a confidence in-
terval of the same size as the confidence interval of the distortion.
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Figure 3: Timing Models for Water

4.1.5 Time/Accuracy Trade-Offs

Figure 3 presents the timing models for Water (these models are
in the same format as the distortion models). The F values for all of
these models are in the hundreds of thousands or more, the corre-
sponding p values are less than 0.0001, and the R? values are above
99%, which indicates that the models almost perfectly explain the
variation in the data.

Several aspects of these models are of interest. First, the coef-
ficient cg is always 1, indicating that the estimated execution time
with no failures is the same as the corresponding measured failure-
free execution times. Second, the other coefficients c¢; through c4
are all negative, indicating that the execution time decreases as the
corresponding task block failure rate increases. This is as expected
— for this program, failing a task does not affect the amount of
computation that the remaining computation performs. The exe-
cution time therefore decreases by an amount proportional to the
amount of computation that the failed task would otherwise have
performed. This property also implies that the sum of the coef-
ficients ¢1 + c2 + c3 + c4 is the proportion of the computation
performed by failable tasks (for Water the remaining computation
takes place in the main task). The models indicate that roughly
90% of the computation takes place in failable tasks.

There is a significant difference in the execution time decreases
associated with failures of different task block executions. For ex-
ample, c; varies between -0.4 and -0.5, which indicates that a 10%
failure rate for task block 1 translates into an approximately 4% or
5% reduction in the execution time. But ¢4 is much smaller (be-
tween -0.004 and -0.008), indicating that the failing executions of
task block 4 have little or no impact on the execution time.

A comparison of the coefficients from the distortion and tim-
ing models makes it possible to quantify the time/accuracy trade-
offs associated with failing different task blocks. Conceptually, the
goal is to minimize the amount of distortion one must pay to ob-
tain a given decrease in the execution time. The ratios of the dis-
tortion model coefficients to the corresponding timing model co-
efficients estimate how much distortion one must pay to obtain a
unit decrease in execution time by failing executions of the corre-
sponding task block. For example, this ratio for the coefficient c1
is roughly (0.052/ — .48) = —.11 while the ratio for c4 is roughly
(0.54/ — .006) = —90. To obtain a given reduction in the execu-
tion time from failing task block 4, one must accept over 900 times
the distortion associated with a corresponding reduction in the ex-
ecution time from failing task block 1. Clearly any strategy that
purposefully fails tasks to achieve a given execution time reduction
goal is much better off failing executions of task block 1.

Given an execution time reduction goal, it is possible to use the

two models to calculate target task block failure rates for each task
block that deliver the desired execution time reduction while mini-
mizing the resulting distortion — simply maximize the failure rates
for the task blocks in order of their corresponding distortion/time
coefficient ratios (while staying within the limits of the model) until
the model indicates that the desired execution time reduction goal
has been achieved. This calculation provides a target task block
failure rate for each task block. Applying the distortion model to
these failure rates provides an estimate of the distortion caused by
the failures that achieve the execution time reduction. This calcu-
lation indicates if it is possible to achieve a given execution time
reduction goal while staying within a given distortion bound.

The preceding calculation starts with a target execution time re-
duction and minimizes the distortion that results from this reduc-
tion. It is also possible to run the calculation in the other direction
to minimize the execution time subject to a given distortion bound.

4.2 Search

We ran Search on four different inputs; the inputs vary in the
backscattering parameters. The program calculates and outputs a
backscattering coefficient for 51 different solid/energy level pairs;
this coefficient indicates the percentage of the electrons that es-
cape back out of the solid. We take the resulting sequence of 51
backscattering coefficients as the output of the program.

4.2.1 Task Blocks and Criticality Testing

Search has one task block which uses a Monte-Carlo simulation
to trace the paths of the electrons through the solid. Our criticality
testing experiment revealed that this task block was failable since it
produced a mean distortion of less than 0.1 when failed at the target
10% rate during our criticality testing runs.

4.2.2 Distortion Models

Figure 4 presents the distortion models for Search; dmmp(xl) is
the composite model for inputs 1, 2, and 4 (see Section 4.2.3). The
F values for all of these models are in the tens of thousands, the
corresponding p values are less than 0.0001, and the R? values are
above 96%, which indicates that the model explains over 96% of
the variation in the data.

The coefficient c; is relatively small, which indicates that the
distortion increases relatively slowly as that task fails. In partic-
ular, a 10% failure rate for task block 1 results in approximately
0.01 increase in the estimated distortion. The program is therefore
relatively resilient to failures.

Note that the models are close for all of the different inputs,
which (because the models are linear) indicates that the models are
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largely independent of the input to the program. It should there-
fore be feasible to use models developed from one set of inputs to
predict distortions for other inputs.

The observed biases for the distortion sampling runs are all close
to zero, which indicates that failing tasks does not systematically
bias the outputs in any direction.

4.2.3 Predictive Power and Confidence Bounds

We evaluate the predictive power of our technique by obtaining
a composite model for our learning inputs (we selected inputs 1, 2,
and 4) and applying the model to the observations for our unseen in-
put (input 3). Specifically, we concatenated our observations from
our learning inputs, used regression to obtain a composite model,
then calculated the number of observations x1,d from the distor-
tion sampling runs for the unseen input 3 whose observed distor-
tion d fell above the upper 95% confidence bound of the distortion
estimate d(z;) from the composite model. Of the 1832 observa-
tions from the distortion sampling runs for the unseen input 3, 57
(or approximately 3%) fell above the upper 95% confidence inter-
val from the composite model, which indicates that the composite
model was able to successfully predict the distortion behavior of
the unseen input.

A final question is the size of the confidence bounds. The max-
imum upper 95% confidence bound for any sampled task block
failure point x; in any of the 7328 distortion sampling runs was
0.0136. An appropriate bound on the distortion at a 25% task fail-
ure rate is therefore approximately 0.039.

For small task failure rates it is possible to obtain a tighter confi-
dence bound. Specifically, we discarded all observations x 1, d with
z1 greater than 1% and used regression on the remaining observa-
tions to obtain the 1% failure rate model. We then used this model
to compute the upper 95% confidence bound for all of the 2568
points with x; less than or equal to 1%. The maximum bound was
0.00157. An appropriate bound on the distortion for task failure
rates below 1% is therefore approximately 0.0066.

4.2.4 Time/Accuracy Trade-Offs

Figure 5 presents the timing models for Search. The F values for
all of these models are in the millions, the corresponding p values
are less than 0.0001, and the R? values are 100%, which indicates
that the models perfectly explain the variation in the data.

The fact that the coefficient c; is 0.99 indicates that the program
spends almost all of its time in task block 1 and that the running
time is directly proportional to the percentage of these executions
of this task blocks that do not fail. The distortion/timing model
coefficient ratio is approximately -0.12, which indicates (for exam-

ple) that a decrease in the execution time of 10% entails a distortion
cost of roughly 0.01. As for Water, one can use these two models
to navigate the execution time/accuracy trade-off space to move to
a more desirable location in this space.

4.3 String

We ran String on two pairs of inputs (for a total of four inputs).
Each pair has different seismic data and starting velocity models.
Within each pair the inputs differ on the ray tracing parameters used
to compute the velocity model. The output is the velocity model for
the geology between the oil wells. This output is a large matrix of
numbers whose size varies depending on the input.

4.3.1 Task Blocks and Criticality Testing

String has five task blocks. Executions of the first task block
shoot rays through the current velocity model, storing their inter-
mediate results into blocks of storage allocated for that purpose.
Executions of the second task block combine these results into a
single block of storage that executions of the third task block use to
compute a new velocity model. The fourth task block creates data
structures used in the remaining computation; the fifth task block
deallocates these data structures at the end of the computation. Our
criticality testing runs revealed that the first two task blocks are
failable, while the third and fourth task blocks are critical. We at-
tribute the criticality of the third task block to the fact that failing its
executions leaves some of the values of the old velocity model in
place, which causes significant distortion. The fourth task block is
critical because failures in its executions leave the remaining com-
putation without a place to store some of its results. Finally, failures
of the fifth task have no effect at all on the result, but leave the data
structures allocated at the end of the computation.

4.3.2 Distortion Models

Figure 6 presents the distortion models for String; dcomp (z1,z2)
is the composite model for inputs 1, 2, and 4 (see Section 4.3.3).
The F values for all of these models are in the thousands, the corre-
sponding p values are less than 0.0001, and the R? values vary from
around 80% (for inputs 1 and 3) to around 90% (for inputs 2 and 4).
The models for inputs 1 and 3 are similar to each other but differ
from the models for inputs 2 and 4, which are again similar to each
other. We attribute this variation to the variation in the inputs —
inputs 1 and 3 share a seismic data set and starting velocity model,
as do inputs 2 and 4. The differences in these models underscore
the importance of including representative inputs in the test input
set that elicit the full range of program failure and timing behavior.
The R? value for the composite model is around 44%, which re-
flects the differences in the data used to construct the model. The
coefficients c¢; and c2 are very small, which indicates that the dis-
tortion is hardly affected by task failures. It is therefore possible to
fail a very large proportion of the tasks without incurring substan-
tial distortion.

The observed biases for the distortion sampling runs are all close
to zero, which indicates that failing tasks does not systematically
bias the outputs in any direction.

4.3.3 Predictive Power and Confidence Bounds

We evaluate the predictive power of our technique by obtaining
a composite model for our learning inputs (we selected inputs 1, 2,
and 4) and applying the model to the observations for our unseen in-
put (input 3). Of the 769 observations from the distortion sampling
runs for the unseen input 3, 38 (or approximately 5%) fell above the
upper 95% confidence interval from the composite model, which
indicates that the composite model was able to successfully predict
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the distortion behavior of the unseen input. A final question is the
size of the confidence bounds. The maximum upper 95% confi-
dence bound for any sampled task block failure point x1, x2 in any
of the 3076 distortion sampling runs was 0.0229. An appropriate
probabilistic bound on the distortion at a 50% task failure rate for
executions of task blocks 1 and 2 is therefore approximately 0.063.
For small task failure rates it is possible to obtain a tighter confi-
dence bound. Specifically, we discarded all observations x1, z2, d
with x1, z2 greater than 1% and used regression on the remaining
observations to obtain the 1% failure rate model. We then used this
model to compute the upper 95% confidence bound for all of the
761 points with x1,x2 less than or equal to 1%. The maximum
bound was 0.00171. An appropriate bound on the distortion for
task failure rates below 1% is therefore approximately 0.0026.

4.3.4 Time/Accuracy Trade-Offs

Figure 7 presents the timing models for String. The F values
for all of these models are in the tens to hundreds of thousands;
the corresponding p values are less than 0.0001, and the R? values
are close to 99%, which indicates that the models almost perfectly
explain the variation in the data.

The values of the timing model coefficients c; and c2 indicate
that the program spends most of its time in task block 1, although
there is some variation between the different inputs. The distor-
tion/timing model coefficient ratios clearly favor failing executions
of task block 1. The distortion model coefficients c; and c2 are
comparable, indicating that comparable failure rates of tasks from
the two task blocks cause comparable distortions. But the timing
model coefficient c; is significantly smaller than cz. Failures of ex-
ecutions of task block 1 therefore provide a much larger reduction
in execution time than failures of executions of task block 2.

44 SOR

We ran SOR on six different inputs: 96ga, 96gb, 192ga, 192gb,
384ga, and 384gb. All of the inputs are taken from the SPLASH
benchmark Ocean [19, 18], which simulates the role of eddy and
boundary currents in influencing large-scale ocean movements.

4.4.1 Task Blocks and Criticality Testing

Search has three task blocks. Executions of the first task block
copy the input into a work array. Executions of the second task
block operate on the work array to solve the system of equations.
Executions of the third task block copy the solution from the work
array into the output array. Both the first and third task blocks are
critical — failures in executions of these task blocks either cause
SOR to solve the wrong set of equations or to fail to copy out part
of the solution. In either case the result is significant distortion. As
we discuss further below, the second task block is failable.

4.4.2 Distortion

An examination of the distortion sampling runs shows that fail-
ures of executions of task block 2 do not affect the distortion — in
fact, SOR exhibits essentially zero distortion regardless of the task
failure rate! An examination of the application reveals the reason
for this behavior — the solution algorithm contains a termination
test that iterates the solver until all errors in the solution fall below
a certain precision bound.

4.4.3 Execution Times

Figures 8 through 13 plot the execution times of the distortion
sampling runs as a function of the task failure rate in those runs.
Unlike all of the other applications, increasing the task failure rate
increases, rather than decreases, the execution time of the compu-
tation. The reason for this increase is that failing tasks causes the
algorithm to execute more iterations before it converges. The net
effect is an increase in the computation time. For this program, it
is possible to fail tasks to tolerate hardware faults with no loss in
accuracy. But failing tasks in an attempt to reduce the execution
time is counterproductive.

4.5 Discussion

One of the benefits of our approach is that it can identify criti-
cal parts of the computation whose failures have a large effect on
the accuracy of the result. The clear pattern that emerges is that
tasks that move or copy data are critical — if they fail, the down-
stream computation that reads the data is usually unable to generate
an acceptable output because its input diverges significantly from
the correct input. Tasks that create data structures are even more
critical — a program that attempts to access an incompletely con-
structed data structure usually fails because of an addressing ex-
ception and is unable to produce any result at all. We expect this
pattern to also hold for different programs.

4.5.1 Failable Tasks

In retrospect, it is possible to reconstruct the reasons why the task
failures cause the applications in our study behave the way they do.
The failable tasks in Water, Search, and String all either compute
a set of contributions that are combined to obtain a final result, or
combine these contributions to produce the final result. Although
the programs themselves perform complex, detailed computations,
it is possible to come up with a relatively simple high-level char-
acterization of the behavior of each program that explains the ob-
served results.

At a high level, Water essentially computes sums of positive
numbers. The net effect of failing tasks is to remove some of the
positive numbers from the sums. On average, the resulting relative
reduction in the values of the sums will be roughly proportional
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to the percentage of numbers removed from the sums. The coef-
ficients in the distortion model capture the relative contribution of
each partial sum to the final output total energy of the system of
water molecules. Because all of the summed numbers are positive,
it is possible to model the bias as a linear function of the task fail-
ure rates and apply that bias to correct the output. One can view the
resulting computation as randomly selecting a subset of the num-
bers to sum, computing the sum of that subset, then using the size
of the subset to extrapolate the partial sum to obtain an estimate of
the sum of all of the numbers.

At a high level, the tasks in Search essentially sample a popula-
tion of electron paths. The net effect of failing a task is to discard
the samples that the task would have performed. The net effect
of performing fewer samples is that the resulting estimate of the
property of interest in the population may be somewhat less accu-
rate. The coefficient c; in Search’s distortion model indicates that
failing half the tasks (in effect, performing half of the number of
samples) can cause a distortion of around 0.06. To place this loss
of accuracy in perspective, consider that simply changing the ran-
dom number seed that drives the Monte Carlo simulation in Search
can cause a distortion of 0.08 in the failure-free computation.

At a high level, the failable tasks in String either sample a popu-
lation of rays projected through the velocity model of the geology
between two oil wells or combine the results of this sampling pro-
cess. Task failures therefore have the effect of discarding projected
rays. Because the combination operator averages the contributions,
there is no bias and failures have little effect on the accuracy of the
final computation.

SOR is a special case in our set of sample programs. Because
of the termination test in the solution algorithm, the algorithm is,
in effect, already set up to tolerate failures. The underlying mathe-
matics guarantees that the algorithm will eventually converge even
in the face of failures. The only question is how long this conver-
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gence will take. One interesting aspect of our methodology is that
it reveals the presence of this property in the computation.

4.5.2 Implications for Other Programs

In general, we anticipate that many computations will turn out to
have the same general pattern as Water, String, and Search. Many
graphics computations have this high-level pattern [11], as do in-
formation retrieval computations [5]. And of course other scientific
computations share this pattern [1]. We anticipate that our tech-
nique can be applied to all of these kinds of programs, to make
the programs more robust in the face of both software and hard-
ware errors, and to reduce the execution time while maintaining an
acceptable distortion.

5. RELATED WORK

Dealing with hardware failures in long-running scientific com-
putations is a well-known problem. A standard approach to this
problem is checkpoint/restore [12], which periodically checkpoints
the state of the computation on stable storage. If the hardware run-
ning the computation fails, the state is restored from stable storage
when the system comes back up and the computation continues
from the last checkpoint. Researchers have also developed tech-
niques for making distributed scientific computations robust in the
face of partial failures. The basic technique is to farm tasks out to
a pool of machines, then respond to failures of these machines by
reexecuting the failed tasks on other machines [16, 3]. The goal is
to obtain a computation that survives hardware failures to produce
the same result as the computation without failures. Unlike our
proposed technique, they are not designed to enable computations
to survive software errors, nor do they open up the possibility of
reducing the execution time while staying within accuracy bounds.

We know of several software systems that use ad-hoc techniques
to survive software errors. The Lucent SESS telephone switch and



IBM MVS operating systems, for example, both apply hand-coded
data structure inconsistency detection and repair to recover from
errors that corrupt the data structures. The reported results indicate
an order of magnitude increase in the reliability of the system [9].
MapReduce discards records that cause the record processing task
to fail multiple times [5]. We know of a graphics rendering algo-
rithm that discards computations associated with problematic trian-
gles instead of including complex special-case code that attempts to
render the triangle into the scene [11]. These systems illustrate the
value of recovery techniques that allow systems to execute through
errors and faults to generate acceptable but potentially distorted re-
sults. None of these systems provides any indication of how accu-
rate the resulting outputs are likely to be.

Researchers have recently developed several general techniques
that allow computations to execute through software errors with-
out failing. Examples include failure-oblivious computing [15],
acceptability-oriented computing [14], data structure repair [6], and
transactional function termination [17]. While the empirical results
indicate that these techniques often enable computations to con-
tinue executing successfully, they provide no indication of how ac-
curate or correct the resulting outputs are likely to be.

Asynchronous iteration [8] relaxes standard ordering constraints
in iterative solvers to allow parallel processors to proceed with-
out synchronization, typically as they operate on different regions
of the problem that potentially share border elements. The lack
of synchronization introduces nondeterminism into the computa-
tion as different processors asynchronously read and write the same
(typically border) elements. Our technique, in contrast, completely
eliminates some computations rather than running computations
asynchronously at variable execution rates.

To the best of our knowledge, our research is the first to provide
probabilistic accuracy bounds for program outputs in the face of
failures within the computation.

6. CONCLUSION

Software errors and hardware faults can substantially impair the
ability of a given program to deliver acceptable results to its users.
Standard program execution platforms can leave programs quite
vulnerable to errors and faults — a standard response upon encoun-
tering an error or failure is to terminate the computation.

We have developed an alternate approach in which tasks provide
an effective fault containment mechanism — when a task encoun-
ters an error or fault, the execution platform simply discards the
task and continues on to complete the remaining tasks in the com-
putation. Probabilistic distortion models bound the resulting dis-
tortion in the output; probabilistic timing models enable the user to
predict the effect on the overall execution time of the computation.

The distortion model allows users to quantitatively evaluate the
effect of any failures on the accuracy of the output. In many cases
the model may allow users to confidently accept results produced
by computations that have encountered failures during their execu-
tion; without such a model, the user would have no good way of
estimating the potential distortion and therefore no confidence in
the result. We anticipate that the availability of the distortion model
will make techniques that discard tasks when they encounter faults
much more acceptable to users and therefore much more widely
used. The net effect will be a significant increase in the reliability
and robustness of the corresponding computations.
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