
Static Detection of Deadlock for Java Libraries

by

Amy Lynne Williams

B.S., Computer Science, University of Utah (2003)
B.S., Mathematics, University of Utah (2003)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2005

c© Massachusetts Institute of Technology 2005. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 20, 2005

Certified by. .

Michael D. Ernst
Associate Professor

Thesis Supervisor

Accepted by .
Arthur C. Smith

Chairman, Department Committee on Graduate Students

2

Static Detection of Deadlock for Java Libraries

by

Amy Lynne Williams

Submitted to the Department of Electrical Engineering and Computer Science
on May 20, 2005, in partial fulfillment of the

requirements for the degree of
Master of Science in Computer Science

Abstract

Library writers wish to provide a guarantee not only that each procedure in the
library performs correctly in isolation, but also that the procedures perform correctly
when run in conjunction. To this end, we propose a method for static detection of
deadlock in Java libraries. Our goal is to determine whether client code exists that
may deadlock a library, and, if so, to enable the library writer to discover the calling
patterns that can lead to deadlock.

Our flow-sensitive, context-sensitive analysis determines possible deadlock config-
urations using a lock-order graph. This graph represents the order in which locks are
acquired by the library. Cycles in the graph indicate deadlock possibilities, and our
tool reports all such possibilities. We implemented our analysis and evaluated it on
18 libraries comprising 1245 kLOC. We verified 13 libraries to be free from deadlock,
and found 14 distinct deadlocks in 3 libraries.

Thesis Supervisor: Michael D. Ernst
Title: Associate Professor

3

4

Acknowledgments

I wish to publicly acknowledge a number of people for offering me their support,

encouragement, and assistance. First, relating to this work, I thank Michael Ernst

and Bill Thies, who wrote or co-wrote significant portions of the paper from which

this thesis is derived, and who worked with me on the development of these ideas.

What follows represents the fruits of a collective effort rather than an individual one.

I am indebted to them for their time and patience—for their willingness to teach.

There are others who have not been directly involved with this work, but who are

due much credit. I am grateful for the teachers I have had throughout my life, both

formal and informal. Thanks to Wilson Hsieh for inspiring me with his extraordinary

teaching ability and for encouraging me to attend graduate school. Thanks also to

Kristin Lang Hansen (glad I was the first to know, Misses!). Her friendship has been

a wonderful support, and her encouragement and wisdom influential.

Thanks to my family for their love, support, and kindness. Each of them live

exemplary lives, and I am honored and blessed to be their sister and daughter. I

give my love to my siblings, Elizabeth, David, and Brett, and to my devoted parents.

I especially thank my mother for her powerful example of faith in God, unspoiled

integrity, and selfless service. That example has taught me much, and has lit the way

of life before me.

Finally and primarily, I thank the God of Heaven and Earth, Whose influence I

have felt during my time at MIT and all throughout my life. All my thanks and praise

are insufficient to express the debt of gratitude I feel to Him and to His Beloved Son,

Jesus Christ. Ever He calls to do right, and ever I fall short. His mercy and love

know no bounds, and though I fall, He lifts me up.

I was generously supported for the 2004–2005 academic year by a National Science Foundation
Graduate Fellowship. I also received much support from NSF grant CCR-0133580 and the MIT-
Oxygen Project.

5

6

Contents

1 Introduction 11

2 Locks in Java 17

3 Analysis Synopsis 19

3.1 Lock-Order Graph . 19

3.2 Deadlocks Detected by Our Technique 20

3.2.1 Assumptions about Client Code. 21

3.2.2 Assumptions about Library Code. 22

4 Algorithm Details 25

4.1 Dataflow Rules . 27

4.2 Calls to wait() . 32

4.3 Dataflow Example . 33

4.4 Reporting Possible Deadlock . 35

4.4.1 Simple and Non-Simple Cycles 35

4.5 Intraprocedural Weaknesses . 38

5 Reducing False Positives 39

5.1 Unaliased Fields . 39

5.2 Callee/Caller Type Resolution . 41

5.3 Final and Effectively-Final Fields . 42

5.4 Method Synchronization Target . 42

5.5 Born-Before . 43

7

6 Results 45

6.1 Deadlocks Found . 45

6.1.1 Deadlocks Due to Cyclic Data Structures. 46

6.1.2 Other Deadlock Cases. 48

6.1.3 Fixing Deadlocks. 51

6.2 Verifying Deadlock Freedom . 51

6.3 Unsound Filtering Heuristics . 52

7 Related Work 53

7.1 Static Deadlock Prevention . 53

7.2 Dynamic Deadlock Avoidance . 58

7.3 Dynamic Deadlock Detection . 58

8 Conclusions 61

8

List of Figures

1-1 Simplified code excerpt from the BeanContextSupport class in the java.

beans.beancontext package of Sun’s JDK. 13

1-2 Client code that can cause deadlock in the methods from Figure 1-1. 14

3-1 Portion of lock-order graph for the code in Figure 1-1. 20

4-1 Type domains for the lock-order dataflow analysis. 26

4-2 Dataflow rules for the lock-order data-flow analysis. 28

4-3 Helper functions for the lock-order dataflow analysis. 29

4-4 Union and difference operators for graphs, and join operator for sym-

bolic state. 30

4-5 Top-level routine for constructing a lock-order graph for a library of

methods. 32

4-6 Example code that can produce deadlock because of a call to wait(). 33

4-7 Example illustrating operation of the dataflow analysis. 34

4-8 A graph containing a non-simple cycle. 35

4-9 Example code that produces a lock-order graph with both simple and

non-simple cycles and the client code that can produce deadlock. . . . 36

4-10 Code excerpt from Sun’s java.io.PrintStream class. 37

5-1 Code for callee/caller type resolution optimization. 42

5-2 Example class containing a field detected as born-before. 43

6-1 Number of deadlock reports for each library. 46

6-2 Code excerpt from Classpath’s java.awt.EventQueue.postEvent(). . . 48

9

6-3 Library code, lock-order graph, and client code that deadlocks JDK’s

StringBuffer class. 49

6-4 Simplified library code from PrintWriter and CharArrayWriter from

Sun’s JDK and client code that causes deadlock. 49

6-5 Client code that induces deadlock in the JDK’s DropTarget class. . . 50

10

Chapter 1

Introduction

Deadlock is a condition under which the progress of a program is halted as each

thread in a set attempts to acquire a lock already held by another thread in the set.

Because deadlock prevents an entire program from working, it is a serious problem.

Finding and fixing deadlock is difficult. Testing does not always expose deadlock

because it is infeasible to test all possible interleavings of a program’s threads. In

addition, once deadlock is exhibited by a program, reproducing the deadlock scenario

can be troublesome, thus making the source of the deadlock difficult to determine.

One must know how the threads were interleaved to know which set of locks are in

contention.

We propose a method for static deadlock detection in Java libraries. Our method

determines whether it is possible to deadlock the library by calling some set of its

public methods. If deadlock is possible, it provides the names of the methods and

variables involved.

To our knowledge, the problem of detecting deadlock in libraries has not been in-

vestigated previously. This problem is important because library writers may wish to

guarantee their library is deadlock-free for any calling pattern. For example, the spec-

ification for java.lang.StringBuffer in Sun’s Java Development Kit (JDK) states:

The [StringBuffer] methods are synchronized where necessary so that all

the operations on any particular instance behave as if they occur in some

11

serial order that is consistent with the order of the method calls made by

each of the individual threads involved.

If the operations are to behave as if they occurred in some serial order, deadlock

between StringBuffer methods should not be possible. No serial ordering over

the StringBuffer methods could lead to deadlock because locks acquired by Java’s

synchronized construct (which StringBuffer uses) cannot be held between method

calls. Nonetheless, our tool reports a calling pattern that causes deadlock in String-

Buffer.

Libraries are often vulnerable to deadlock. We have induced 14 distinct in-

stances of deadlock in 3 libraries (for detailed results, see Chapter 6). Simplified

code for one of the deadlocks found in Sun’s JDK is shown in Figure 1-1. In the

BeanContextSupport class of the java.beans.beancontext package, the remove() and

propertyChange() methods obtain locks in a different order. The client code shown

in Figure 1-2 can induce deadlock using these methods. Several other methods in

the same package use the same locking order as remove() and thus exhibit the same

deadlock vulnerability.

This deadlock has a simple solution: the propertyChange() method can synchro-

nize on BeanContext.globalHierarchyLock before children, or it could lock only

globalHierarchyLock. Section 6.1.3 describes solutions for other deadlocks.

An overview of our analysis is given in Chapter 3. We have implemented our

technique and analyzed 18 libraries consisting of 1245k lines of code, obtained from

SourceForge, Savannah, and other open source resources. Using our tool, we verified

13 of these libraries to be free of deadlock, and confirmed 14 distinct instances of

deadlock in 3 libraries.

Detecting deadlock across all possible calls to a library is different than detect-

ing deadlock in a whole program. Concrete aliasing relationships exist and can be

determined for a whole program, whereas the analysis of a library must consider all

possible calls into the library, which includes a large number of aliasing possibilities.

In a program, the number of threads can often be determined, but a client may call

into a library from any number of threads, so our analysis must model an unbounded

12

class BeanContextSupport {

protected HashMap children;

public boolean remove(Object targetChild) {

synchronized(BeanContext.globalHierarchyLock) {

...

synchronized(targetChild) {

...

synchronized (children) {

children.remove(targetChild);

}

...

}

}

return true;

}

public void propertyChange(PropertyChangeEvent pce) {

...

Object source = pce.getSource();

synchronized(children) {

if ("beanContext".equals(propertyName) &&

containsKey(source) &&

((BCSChild)children.get(source)).isRemovePending()) {

BeanContext bc = getBeanContextPeer();

if (bc.equals(pce.getOldValue()) &&

!bc.equals(pce.getNewValue())) {

remove(source);

}

else {

...

}

}

}

}

}

Figure 1-1: Simplified code excerpt from the BeanContextSupport class in the java.

beans.beancontext package of Sun’s JDK.

13

Object source = new Object();

BeanContextSupport support = new BeanContextSupport();

BeanContext oldValue = support.getBeanContextPeer();

Object newValue = new Object();

PropertyChangeEvent event = new PropertyChangeEvent(source,

"beanContex", oldValue, newValue);

support.add(source);

support.vetoableChange(event);

thread 1: support.propertyChange(event);

thread 2: support.remove(source);

Figure 1-2: Client code that can cause deadlock in methods from Figure 1-1. In
thread 1, children is locked, then BeanContext.globalHierarchyLock is locked (via
a call to remove) while in thread 2, the ordering is reversed. Deadlock occurs under
some thread interleavings. The initialization code shown above is designed to elicit
the relevant path of control flow within the library.

number of threads. These differences combine to yield a much larger number of re-

ports than would be present in a program, which makes it important to suppress false

reports.

The remainder of this thesis is organized as follows. Chapter 2 explains the seman-

tics of locks in the Java programming language. Chapter 3 discusses our analysis at a

high level, and Chapter 4 provides a more detailed description of the analysis. Chap-

ter 5 describes techniques for reducing the number of spurious reports. Chapter 6

gives our experimental results. Related work is given in Chapter 7, and Chapter 8

concludes.

This thesis is an extended version of a paper [34]. The thesis contains additional

information about non-simple cycles in lock-order graphs (see Section 4.4.1, pg. 35)

and a description of two optimizations omitted from the paper (see Section 5.4, pg. 42,

and Section 5.5, pg. 43). The section on unaliased fields (Section 5.1, pg. 39) describes

how references to the same field are disambiguated (storing the heap object for the

field’s receiver). This discussion also applies to final fields (Section 5.3, pg. 42) Also

14

included are the size of the lock-order graphs for each of the libraries before they

are pruned (see Figure 6-1, pg. 46), a more detailed explanation of each of the cyclic

deadlock cases (Section 6.1.1, pg. 46), and a description of an additional deadlock

possiblity in the Collection classes of JDK and Classpath. Finally, we give a longer

discussion of related work (Chapter 7).

15

16

Chapter 2

Locks in Java

In Java, each object conceptually has an associated lock; for brevity, we will sometimes

speak of an object as being a lock. The Java “synchronized (expr) { statements }”

statement evaluates the expression to an object reference, acquires the lock, evaluates

the statements in the block, and releases the lock when the block is exited, whether

normally or because of an exception. This design causes locks to be acquired in some

order and then released in reverse (that is, in LIFO order), a fact that our analysis

takes advantage of. A Java method can be declared synchronized, which is syntactic

sugar for wrapping the body in synchronized (this) { ... } for instance methods,

or synchronized (C.class) { ... }, where C is the class containing the method,

for static methods.

A lock that is held by one thread cannot be acquired by another thread until the

first one releases it. A thread blocks if it attempts to acquire a lock that is held by

another thread, and does not continue processing until it successfully acquires the

lock.

A lock is held per-thread; if a given thread attempts to re-acquire a lock, then the

acquisition always succeeds without blocking.1 The lock is released when exiting the

synchronized statement that acquired it.

1It is sufficient to consider multiple synchronized statements over the same object in one thread
as a no-op. A Java virtual machine tracks the number of lock/unlock actions (entrance and exit of a
synchronized block) for each object. A counter is updated for each synchronized statement, but if the
current thread already holds the target lock, no change is made to the thread’s lock set.

17

The wait(), notify(), and notifyAll() methods operate on receivers whose locks

are held. An exception is thrown if the receiver’s lock is not held. The wait() method

releases the lock on the receiver object and places the calling thread in that object’s

wait set. While a thread is in an object’s wait set, it is not scheduled for processing.

Threads are reenabled for processing via the notify() and notifyAll() methods,

which, respectively, remove one or all the threads from the receiver object’s wait set.

Once a thread is removed from an object’s wait set, the wait() method attempts to

reacquire the lock for the object it was invoked on. The wait() method returns only

after the lock is reacquired. Thus, a thread may block inside wait() as it attempts

to reacquire the lock for the receiver object.

Java 1.5 introduces new synchronization mechanisms in the java.util.concurrent

package that allow a programmer to acquire and release locks without using the

synchronized keyword. These mechanisms make it possible to acquire and release

locks in any order (in particular, acquires and releases need not be in LIFO order).

Our tool does not handle these new capabilities in the Java language. However, most

synchronization can be expressed using the primitives from Java 1.4, and we therefore

expect that our technique will be applicable under current and future releases of Java.

18

Chapter 3

Analysis Synopsis

We consider a deadlock to be the condition in which a set of threads cannot make

progress because each is attempting to acquire a lock that is held by another member

of the set. Our deadlock detector uses an interprocedural analysis to track possible

sequences of lock acquisitions within a Java library. It represents possible locking

patterns using a graph structure—the lock-order graph, described below. Cycles in

this graph indicate possibilities of deadlock.

For each cycle, our tool reports the variable names of the locks involved in the

deadlock as well as the methods that acquire those locks (see Section 4.4). Our tool is

conservative and reports all deadlock possibilities. However, the conservative approx-

imations cause the tool to consider infeasible paths and impossible alias relationships,

resulting in false positives (spurious reports).

3.1 Lock-Order Graph

The analysis builds a single lock-order graph that captures locking information for an

entire library. This graph represents the order in which locks are acquired via calls to

the library’s public methods. Combining information about the locking behavior of

each public method into one graph allows us to represent any calling pattern of these

methods across any number of threads.

Each node of the lock-order graph represents a set of objects that may be aliased.

19

(BeanContextSupport.propertyChange() locks BeanContextSupport.children,

BeanContextSupport.remove() locks BeanContext.globalHierarchyLock)

(BeanContextSupport.remove() locks BeanContext.globalHierarchyLock,

BeanContextSupport.remove() locks BeanContextSupport.children)

Object HashMap

Figure 3-1: Relevant portion of the lock-order graph for the code in Figure 1-1.
The nodes represent the set of all Objects and HashMaps, respectively. Each edge
is annotated by the sequence of methods (and corresponding variable names) that
acquire first a lock from the source set, then a lock from the destination set.

(Types are an approximation to may-alias information; Section 5.1 gives a finer but

still lightweight approximation applicable to fields.) An edge in the graph indicates

nested locking of objects along some code path. That is, it indicates the possibility

of locking first an object from the source node, then an object from the destination

node.

A cycle consisting of nodes N1 and N2 means that along some code path, an object

o1 ∈ N1 may be locked before some object o2 ∈ N2, and along another (or the same)

path, o2 may be locked before o1. In general, a cycle exposes code paths leading to

cyclic lock orders, and, when the corresponding paths are run in separate threads,

deadlock may occur. Figure 3-1 shows the lock-order graph for the code in Figure 1-1.

To build the graph, the analysis iterates over the methods in the library, building

a lock-order graph for each of them. All possible locking configurations of a method

are modeled, including locks acquired transitively via calls to other methods. At a

call site, the callee’s graph is inserted into the caller. After each method’s lock-order

graph has reached a fixed point, the public methods’ lock-order graphs are merged

into a single graph for the library. Cycles are then detected, and reports are generated.

3.2 Deadlocks Detected by Our Technique

Our goal is to detect cases in which a sequence of client calls (including assignment

to the library’s public fields) can cause deadlock in a library, or to verify that no

such sequence exists. Our tool reports deadlock possibilities in which all deadlocked

20

threads are blocked within a single library, attempting to acquire locks via Java

synchronized statements or wait() calls. Under certain assumptions about the client

and the library, our tool reports all such possibilities.

Our analysis focuses on deadlocks due to lock acquisitions via Java synchronized

statements and wait() calls: progress of a program is halted as each thread in a set

attempts to acquire a lock already held by another thread in the set. We are not

concerned with other ways in which a program may fail to make progress. A thread

might hang forever while waiting for input, enter an infinite loop, suffer livelock, or

fail to call notify() or to release a user- or library-defined lock (that is, using a locking

mechanism not built into Java). These problems in one thread can prevent another

thread or the whole program from making progress: consider a call to Thread.join()

(which waits for a given thread to terminate) on a thread that does not terminate.

Detecting all of these problems is outside the scope of this thesis.

3.2.1 Assumptions about Client Code.

We make three assumptions about client code. If a client deviates from these assump-

tions, our tool is still useful for detecting deadlock, but it cannot detect deadlocks

introduced by the deviant behavior. First, we assume that the client does not include

a class that extends a library class or belongs to a library package. If such a class

exists, it needs to be inspected by our analysis and treated as part of the library.

Second, we assume that that the client does not invoke library methods within call-

backs from the library; that is, all client methods M are either unreachable from the

library, or the library is unreachable from M . For example, if a client class over-

rides Object.hashCode() such that it calls a synchronized method in the library, then

any library method calling hashCode() should model that synchronization. The class

therefore needs to be analyzed as though it is part of the library. Third, we assume

that the client code is well-behaved: either it does not lock any objects locked by the

library, or it does so in disciplined ways (as explained below).

Without the assumption of well-behavedness, it is difficult or impossible to guar-

antee deadlock freedom for a library without examining client code. An adversarial

21

client can induce deadlock if it has access to two objects locked by a library. For

example, suppose that a library has a synchronized method:

class A {

synchronized void foo() { ... }

}

Then a client could cause deadlock in the following way:

A a1 = new A(), a2 = new A();

thread 1: synchronized(a1) { a2.foo(); }

thread 2: synchronized(a2) { a1.foo(); }

A client that locks a different set of objects than those locked by the library is

always well-behaved. This is the case for arbitrary clients if the locks used by the

library do not escape it; that is, if they are inaccessible to the client. Section 5.1

describes a method for detecting some inaccessible locks.

Even if the client and the library share a set of locks, the client can be well-behaved

if it acquires those locks in a restricted pattern. These restrictions could be part

of the library’s specification—and such documentation could even be automatically

generated for the library by a tool like ours. As above, one sufficient restriction is

that clients do not lock objects that the library may lock; this requires the library to

specify the set of objects that it will lock. A more liberal but sufficient restriction is

that the client acquires locks in an order compatible with the library. In this scenario,

the library specifies the order of lock acquisitions (say, as a lock-order graph), and

clients are forbidden from acquiring locks in an order that introduces cycles into the

graph. We believe that these restrictions are quite reasonable, and that information

about the locks acquired by a library are a desirable part of its specification.

3.2.2 Assumptions about Library Code.

In practice, libraries do not exist in isolation. Rather, each library uses additional

libraries (e.g., the JDK) to help it accomplish its task. One approach to analyzing

22

such cascaded libraries is to consider all of the libraries together, as if they were a

single library. However, this hampers modularity, as the guarantees offered for one

library depend on the implementation of other libraries. It also hampers scalability,

as the effective library size can grow unwieldy for the analysis. For these reasons, our

analysis considers each library independently. Consider that the “main” library under

consideration relies on several “auxiliary” libraries. Under certain assumptions about

the main library, our analysis detects all deadlock possibilities in which all threads

are blocked within the main library. It does not report cases in which some threads

are blocked in the main library and other threads are blocked in auxiliary libraries.

We make the following assumptions about library code. First, as the library

under consideration (the main library) may be a client of some auxiliary libraries,

it must satisfy the client assumptions (described previously) to guarantee deadlock

freedom for its own users. Second, the main library cannot perform any synchro-

nization in methods that are reachable via callbacks from auxiliary libraries (e.g., in

Object.hashCode()). Callbacks through the auxiliary libraries are inaccessible to the

analysis. Third, the library cannot use reflection. Reflection can introduce opaque

calling sequences that impact the lock ordering. As with the client code, our analysis

operates as usual even if these assumptions are broken, but it can no longer guarantee

that all deadlock possibilities are reported.

23

24

Chapter 4

Algorithm Details

The deadlock detector employs an interprocedural dataflow analysis for constructing

lock-order graphs. The analysis is flow-sensitive and context-sensitive. At each pro-

gram point, the analysis computes a symbolic state modeling the library’s execution

state. The symbolic state at the end of a method serves as a method summary. The

analysis is run repeatedly over all methods until a fixed point is reached; termination

of the analysis is guaranteed.

The type domains for the analysis are given in Figure 4-1. For simplicity, we

present the algorithm for a language that models the subset of Java relevant to our

analysis. The language omits field assignments; they are not relevant because our

analysis does not track the flow of values through fields. Synchronized methods

are modeled in this language using their desugaring (see Chapter 2) and loops are

supported via recursion. Our implementation handles the full Java language.

Our analysis operates on symbolic heap objects. Each symbolic heap object repre-

sents the set of objects created at a given program point [8]; it also contains their type.

For convenience, we say that a symbolic heap object o is locked when a particular

concrete object drawn from o is locked.

The state is a 5-tuple consisting of:

• The current lock-order graph. Each node in the graph is a symbolic heap

object. The graph represents possible locking behavior for concrete heap objects

drawn from the sets modeled by the symbolic heap objects. A path of nodes

25

T ∈ Type
v ∈ LocalVar

method ∈ MethodDecl = Tr m(T1 v1, T2 v2, . . . , Tn vn) { stmt }
where v1 = this if m is instance method

library ∈ Library = set-of MethodDecls
stmt ∈ Statement = T v | branch stmt1 stmt2

| v := new T | synchronized (v) { stmt }
| v1 := v2 | v := m(v1, . . . , vn)
| v1 := v2.f | wait(v)
| stmt1; stmt2

pp ∈ ProgramPoint
⊥

o = 〈pp, T〉 ∈ HeapObject = ProgramPoint × Type
g ∈ Graph = directed-graph-of HeapObjects

roots ∈ Roots = set-of HeapObjects
env ∈ Environment = LocalVar → HeapObject

s = 〈g, roots, locks, ∈ State = Graph × Roots × list-of HeapObjects ×
env, wait〉 Environment × set-of HeapObjects

Figure 4-1: Type domains for the lock-order dataflow analysis. Parameters are
considered to be created at unique points before the beginning of a method. The
“branch stmt1 stmt2” statement is a non-deterministic branch to either stmt1 or
stmt2.

o1 . . . ok in the graph corresponds to a potential program path in which o1 is

locked, then o2 is locked (before o1 is released), and so on.

• The roots of the graph. The roots represent objects that are locked at some

point during execution of a given method when no other lock is held.

• The list of locks that are currently held, in the order in which they were ob-

tained.

• An environment mapping local variables to symbolic heap objects. The envi-

ronment is an important component of the interprocedural analysis, as it allows

information to propagate between callers and callees. It also improves precision

by tracking the flow of values between local variables.

• A set of objects that have had wait called on them without an enclosing

synchronized statement in the current method.

26

4.1 Dataflow Rules

The dataflow rules for the analysis are presented in Figure 4-2. Helper functions

appear in Figure 4-3, and mathematical operators (including the join operator) are

defined in Figure 4-4. Throughout the following explanation, we define the current

lock as the most recently locked object whose lock remains held; it is the last object

in the list of currently held locks, or tail(s.locks).

The symbolic state is updated in the visit stmt procedure (in Figure 4-2) which

visits each statement in a method. A variable declaration or initialization introduces

a fresh heap object. An assignment between locals copies an object within the local

environment. A field reference introduces a fresh object (the analysis does not model

the flow of values through fields). A branch models divergent paths and is handled

by the join operator below. Calls to wait() are described in Section 4.2.

The rule for synchronized statements handles lock acquires; there are two cases.

First, if the target object o is not currently locked (i.e., if o /∈ s.locks), then an edge

is added to the lock-order graph from the current lock to o, and o is appended to

s.locks. If no objects were locked before the synchronized statement, o becomes a root

in the graph (roots are important at a call site, as discussed below). Next, the analysis

descends into the body of the synchronized block. Upon completion, the analysis con-

tinues to the next statement, preserving the lock-order graph from the synchronized

block but restoring the list of locked objects valid before the synchronized state-

ment. This is correct, since Java’s syntax guarantees that any objects locked within

the synchronized block are also released within the block.

In the second case for synchronized statements, the target is currently locked.

Though the body is analyzed as before, the synchronization is a no-op and does not

warrant an edge in the lock-order graph. To exploit this fact, the analysis needs

to determine whether nested synchronized statements are locking the same con-

crete object. Though symbolic heap objects represent sets of concrete objects, they

nonetheless can be used for this determination: if nested synchronized statements

lock variables that are mapped to the same heap object (during analysis), then they

27

visit stmt(stmt , s) returns State s′

s′ ← s

switch(stmt)
case T v | v := new T

s′.env ← s.env[v := 〈 program point(stmt), T 〉]
case v1 := v2

s′.env ← s.env[v1 := s.env[v2]]
case v1 := v2.f

s′.env ← s.env[v1 := 〈 program point(stmt), declared type(v2.f) 〉]
case stmt1; stmt2

s1 ← visit stmt(stmt1, s)
s′ ← visit stmt(stmt2, s1)

case branch stmt1 stmt2
s′ ← visit stmt(stmt1, s) ⊔ visit stmt(stmt2, s)

case synchronized (v) { stmt }
o ← s.env[v]
if o ∈ s.locks then

// already locked o, so synchronized statement is a no-op
s1 ← s

else
// add o to g under current lock, or as root if no locks held
if s.locks is empty // below, • denotes list concatenation

then s1 ← 〈s.g ∪ o, s.roots ∪ o, s.locks • o, s.env, s.wait〉
else s1 ← 〈s.g ∪ o ∪ edge(tail(s.locks)→ o), s.roots, s.locks • o,

s.env, s.wait〉
s2 ← visit stmt(stmt , s1)
s′ ← 〈s2.g, s2.roots, s.locks, s2.env, s2.wait〉

case v := m(v1, . . . , vn)
s′.env ← s.env[v := 〈 program point(stmt), return type(m) 〉]
∀ versions of m in subclasses of env[v1].T:

sm ← visit method(method decl(m))
s′

m
← rename from callee to caller context(sm, s, n)

// connect the two graphs, including roots
s′.g← s′.g ∪ s′

m
.g

if s.locks is empty then // connect current lock to roots of s′
m

s′.roots← s′.roots ∪ s′
m

.roots
s′.wait← s′.wait ∪ s′

m
.wait

else
∀ root ∈ s′

m
.roots:

s′.g← s′.g ∪ edge(tail(s.locks)→ root)
∀ o ∈ s′

m
.wait: if tail(s.locks) 6= o then

s′.g← s.g ∪ o ∪ edge(tail(s.locks)→ o)
case wait(v)

o ← s.env[v]
if s.locks is empty then

s′.wait← s.wait ∪ o

else if tail(s.locks) 6= o then
// wait releases then reacquires o: new lock ordering
s′.g← s.g ∪ o ∪ edge(tail(s.locks)→ o)

Figure 4-2: Dataflow rules for the lock-order data-flow analysis.

28

program point(stmt) returns the program point for statement stmt

visit method(Tr m(T1 v1, . . . , Tn vn) { stmt }) returns State s′

s′ ← empty State
∀ parameters Ti vi (including this):

s′ ← visit stmt(Ti vi, s
′) // process formals via “T v” rule

s′ ← visit stmt(stmt , s′)

rename from callee to caller context(sm, s, n) returns State s′m
s′m ← sm

∀j ∈ [1, n] : formal j ← sm.env[vj] // formal parameter
∀j ∈ [1, n] : actual j ← s.env[vj] // actual argument
∀o ∈ sm.g : // for all objects o locked by the callee

if ∃ j s.t. o = formal j
// o is formal parameter j of callee method
then if actual j ∈ s.locks

// caller locked o, remove o from callee graph
then s′m.g, s′m.roots ← splice out node(sm.g, sm.roots, o)
// caller did not lock o, rename o to actual arg
else s′m.g, s′m.roots ← replace node(sm.g, sm.roots, o, actual j)

// o is not from caller, rename o to bottom program point pp
⊥

else s′m.g, s′m.roots ← replace node(sm.g, sm.roots, o, 〈pp
⊥
, o.T〉)

s′m.wait← ∅
∀o ∈ sm.wait // for all objects in wait set

if ∃ j s.t. o = formal j
then s′m.wait← s′m.wait ∪ actual j
else s′m.wait← s′m.wait ∪ 〈pp

⊥
, o.T〉

splice out node(g, roots, o) returns Graph g′, Roots roots ′

g′ ← g \ o
∀ edges(src → o) ∈ g s.t. o 6= src :
∀ edges(o→ dst) ∈ g s.t. o 6= dst :

g′ ← g′ ∪ edge(src → dst)
roots ′ ← roots \ o
if o ∈ roots then
∀ edges(o→ dst) ∈ g s.t. o 6= dst :

roots ′ ← roots ′ ∪ dst

replace node(g, roots, oold , onew) returns Graph g′, Roots roots ′

g′ ← (g \ oold) ∪ onew

∀ edges(src → oold) ∈ g : g′ ← g′ ∪ edge(src → onew)
∀ edges(oold → dst) ∈ g : g′ ← g′ ∪ edge(onew → dst)
if oold ∈ roots

then roots ′ ← (roots \ oold) ∪ onew

else roots ′ ← roots

Figure 4-3: Helper functions for the lock-order dataflow analysis.

29

g1 ∪ g2 returns Graph g′

// nodes are HeapObjects: equivalent values are collapsed
nodes(g′) = nodes(g1) ∪ nodes(g2)
// edges are pairs of HeapObjects: equivalent pairs are collapsed
edges(g′) = edges(g1) ∪ edges(g2)

g \ o returns Graph g′

nodes(g′) = nodes(g) \ o
edges(g′) = edges(src → dst) ∈ g s.t. o 6= src ∧ o 6= dst

s1 ⊔ s2 returns State s′

s′.g← s1.g ∪ s2.g
s′.roots← s1.roots ∪ s2.roots
s′.locks← s1.locks // s1.locks = s2.locks
∀v ∈ {v′ | v′ ∈ s1.env ∨ v′ ∈ s2.env} :

if s1.env[v] = s2.env[v]
then s′.env ← s′.env[v := s1.env(v)]
else s′.env ← s′.env[v := 〈program point(join point(v)), T1 ⊔ T2 〉]

s′.wait← s1.wait ∪ s2.wait

T1 ⊔ T2 returns lowest common superclass of T1 and T2

Figure 4-4: Union and difference operators for graphs, and join operator for symbolic
state.

always lock the same concrete object (during execution). This is true within a method

because each heap object is associated with a single program point; as this simplified

language contains no loops, any execution will visit that point at most once and hence

create at most one concrete instance of the heap object. This notion also extends

across methods, as both heap objects and concrete objects are directly mapped from

caller arguments into callee parameters as described below. Thus, repeated synchro-

nization on a given heap object is safely ignored, significantly improving the precision

of the analysis.

Method calls are handled by integrating the graph for the callee into the caller as

follows. In the case of overridden methods, each candidate implementation’s graph

is integrated. The analysis uses the most recent lock-order graph that has been

calculated for the callee. Recursive sequences are iterated until reaching a fixed

point. The calling context is first incorporated into a copy of the callee’s graph either

by removing the formal parameters (if the corresponding argument actual j is locked

30

at the call site, in which case the lock acquire is a no-op from the caller’s perspective)

or by replacing them with the caller’s actual arguments (if actual j is not locked at

the call site). The non-formal parameter nodes are then replaced with nodes of the

same type and with a special program point of pp
⊥
, indicating that they originated

at an unknown program point (bottom). The callee’s wait set is adjusted in a similar

fashion. At this point, an edge is added from the current lock in the caller to each of

the roots of the modified callee graph. Finally, the two graphs are merged, collapsing

identical nodes and edges.

The join operator (⊔) in Figure 4-4 is used to combine states along confluent paths

of the program (e.g., if statements). We are interested in locking patterns along any

possible path, which, for the graphs, roots, and wait sets, is simply the union of the

two incoming states’ values. The list of current locks does not need to be reconciled

between two paths, as the hierarchy of synchronized blocks in Java guarantees that

both incoming states will be the same. The new environment remains the same for

mappings common to both paths. If the mappings differ for a given variable then a

fresh heap object must be introduced for that variable. The fresh object is assigned

a program point corresponding to the join point for the variable (each variable is

considered to join at a separate location). The strongest type constraint for the

fresh object is the join of the variables’ types along each path—their lowest common

superclass.

The algorithm for constructing the entire library’s lock-order graph is given in

Figure 4-5. The top level procedure first computes a fixed point state value for

each method in the library. Termination is guaranteed since there can be at most

|PP| · |Type| heap objects in a method and the analysis only adds objects to the

graph at a given stage. After computing the fixed points, the procedure performs a

post-processing step to account for subclassing. Because the analysis for each method

was based on the declared type of locks, extra edges must be added for all possible

concrete types that a given heap object could assume. While it is also possible to

modify the dataflow analysis to deal with subclassing at each step, it is simpler and

more efficient to use post-processing.

31

top level(library) returns Graph g
s1, . . . , sn ← dataflow fixed points over public methods in library
g ← post process(s1, . . . , sn)

post process(s1, . . . , sn) returns Graph g
g ← empty Graph
∀i ∈ [1, n] :
∀ edges (o1 → o2) ∈ si.g:

// Add edges between all possible subclasses of locked objects.
// All heap objects now have bottom program point pp⊥.
∀ subclasses T1 of o1.T , ∀ subclasses T2 of o2.T :

oT1
← 〈pp⊥, T1〉

oT2
← 〈pp⊥, T2〉

g ← g ∪ oT1
∪ oT2

∪ edge(oT1
→ oT2

)

Figure 4-5: Top-level routine for constructing a lock-order graph for a library of
methods.

4.2 Calls to wait()

A call to wait() on object o causes the lock on o to be released and subsequently

reacquired, which is modeled by adding an edge in the lock-order graph from the most

recently acquired lock to o. However, this edge can be omitted if o is also the most

recently acquired lock, as releasing and reacquiring this lock has no effect on the lock

ordering. In contrast to synchronized statements, wait() can influence the lock-order

graph even though its receiver is locked at the time of the call. For example, before

the wait() call in Figure 4-6, a is locked before b. However, during the call to wait(),

a’s lock is released and later acquired while b’s lock remains held, so a is also locked

after b. Deadlock is therefore possible.

It is illegal to call wait() on an object whose lock is not held; if this happens

during program execution, Java throws a runtime exception. Even so, it is possible

for a method to call wait() outside any synchronized statement, since the receiver

could be locked in the caller. When a method calls wait() outside any synchronized

statement, our analysis needs to consider the calling context to determine the effects

of the wait() call on the lock-order graph. For this reason, when no locks are held

and wait() is called, the receiver object is stored in the wait set and later accounted

for in a caller method.

32

void m1(Object a, Object b) {

synchronized(a) {

synchronized (b) {

a.wait();

...

}

}

}

void m2(Object a, Object b) {

synchronized(a) {

a.notify();

synchronized (b) {

...

}

}

}

Object a = new Object();

Object b = new Object();

thread 1: m1(a, b);

thread 2: m2(a, b);

Figure 4-6: Method m1() imposes both lock orderings a→b and b→a, due to the call
to a.wait(). Method m2(), which imposes the lock ordering a→b, can cause deadlock
when run in parallel with m1(), as illustrated in the third column.

None of the libraries we analyzed reported any potential deadlocks due to wait().

This suggests that programmers most often call wait() on the most recently acquired

lock.

4.3 Dataflow Example

An example of the dataflow analysis appears in Figure 4-7. The example contains a

class A with two methods, foo() and bar(). The symbolic state sfoo represents the

method summary for foo(). Program points are represented as a variable name and

a line number corresponding to the variable’s assignment. For example, 〈ppb1:5, B〉 is

a symbolic heap object, of type B, for parameter b1 on line 5 of foo(); 〈pplock:11, B〉

is a symbolic heap object, also of type B, for the field lock as referenced on line 11

of foo() (though lock is declared on line 2, each field reference creates a fresh heap

object). The lock-order graph for foo() illustrates that parameters b1 and c1 can each

be locked in sequence, with lock locked separately. Note that the graph contains two

separate nodes for b1 and lock—both of type B—in case one of them can be pruned

when integrating into the graph of a caller.

The symbolic state in bar() immediately before the call to foo() is represented

by sbar1 . Since bar() is a synchronized method, a heap object for this appears as

a root of the graph. The graph illustrates that parameters b2 and c2 can be locked

while the lock for this is held. The list of locks held at the point of the call is given

by sbar1 .locks; it contains this and c2.

The most interesting aspect of the example is the method call from bar() to

33

class A {

 B lock;

 public

 void foo(B b1, C c1) {

 synchronized (b1) {

 synchronized (c1) {

 ...

 }

 }

 synchronized (lock) {

 ...

 }

 }

 public

 synchronized void bar(B b2,

 C c2) {

 synchronized (b2) {

 ...

 }

 synchronized (c2) {

 foo(b2, c2);

 }

 }

}

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

sfoo

sbar1

sbar2

g = ppb1:5, B< <

ppc1:5, C< <pplock:11, B< <

roots = {〈pp
b1:5

, B〉,

〈pp
lock:11

, B〉}

locks = {}

env = {this 7→ 〈pp
this:5

, A〉, b1 7→ 〈pp
b1:5

, B〉,

c1 7→ 〈pp
c1:5

, C〉}

g = ppthis:16, A< <

ppb2:16, B< < ppc2:16, C< <

roots = {〈pp
this:16

, A〉}

locks = {〈pp
this:16

, A〉,

〈pp
c2:16

, C〉}

env = {this 7→ 〈pp
this:16

, A〉, b2 7→ 〈pp
b2:16

, B〉,

c2 7→ 〈pp
c2:16

, C〉}

pp , B< < pp , C< <

pp , A< <

Overall lock-order graph

for foo and bar.

g = ppthis:16, A< <

ppb2:16, B< << ppc2:16, C <

pp , B< <

roots = sbar1 .roots

locks = sbar1 .locks

env = sbar1 .env

Figure 4-7: Example operation of the dataflow analysis. The symbolic state is shown
for the method summary of foo, as well as for two points in bar (before and after
a call to foo). The wait sets (not shown) are empty in each case. The top-level
lock-order graph for this library of methods is shown at bottom left.

foo(). This causes the graph of sfoo to be adjusted for the calling context and then

integrated into the graph of sbar1 with edges added from the node for the current

lock, c2. The calling context begins with the actual parameter b2. Since b2 is not

locked in sbar1 at the point of the call, the formal parameter b1 is replaced by b2

throughout the graph of sfoo . However, the actual parameter c2 is locked in sbar1 ,

so the corresponding formal parameter c1 is removed from the graph of sfoo . The

last node in foo() corresponds to lock, which is a field reference rather than a formal

parameter; thus, its program point is replaced with pp⊥ before integrating into bar().

The result, sbar2 , has one new node (pp
⊥
) and two new edges (from c2 to both b2

and pp⊥). The other state components in sbar2 are unchanged from sbar1 .

The last component of Figure 4-7 gives the overall lock-order graph, treating foo()

34

C BA

Figure 4-8: The path {C, A, C, B} is a non-simple cycle: it visits node C twice. This
is the lock-order graph for the class in Figure 4-9.

and bar() as a library of methods. As there is no subclassing in this example, the final

lock-order graph can be obtained simply by taking the union of graphs from sfoo and

sbar2 , setting all program points to pp
⊥
. The cycle in the lock-order graph corresponds

to a real deadlock possibility in which foo() and bar() are called concurrently with

the same arguments.

4.4 Reporting Possible Deadlock

To report deadlock possibilities, the analysis finds each cycle in the lock-order graph

using a modified depth-first search algorithm. Once a cycle is found, a report is

constructed using its edge annotations. Each edge in the lock-order graph has a

pair of annotations, one for the source lock and one for the destination lock. Each

annotation consists of the variable name of the lock and the method that acquires it.

As graphs are combined, edges may come to have multiple annotations.

A report is given for each distinct set of lock variables. These reports include each

of the sets of methods that acquire that set of locks. In this way, methods with the

same or similar locking behavior are presented to the user together. In our experience

with the tool, most of the grouped method sets constitute the same locking pattern,

so this style can save significant user effort.

4.4.1 Simple and Non-Simple Cycles

The analysis reports every simple cycle (also known as an elementary circuit) in a

given graph. A cycle is simple if it does not visit any node more than once. Given a

node that is involved in more than one simple cycle, one can construct a non-simple

35

class NonSimple {

public final A a = new A();

public final B b = new B();

public final C c = new C();

public void method1(C arg) {

synchronized (c) {

synchronized (a) {

synchronized (arg) {

...

}

}

}

}

public void method2(C arg) {

synchronized (arg) {

synchronized (b) {

synchronized (c) {

...

}

}

}

}

}

C theArg = new C();

NonSimple x = new NonSimple();

thread 1: x.method1(theArg);

thread 2: x.method2(theArg);

Figure 4-9: Example code that produces a lock-order graph with both simple and
non-simple cycles and the client code that can produce deadlock. The two methods
in class NonSimple each produce a simple cycle in the corresponding lock-order graph
(see Figure 4-8), and those two simple cycles form a single non-simple cycle. Neither
of the simple cycles correspond to a realizable deadlock (i.e., deadlock cannot be
induced by calling only one of the two methods), but the non-simple cycle does
indicate deadlock (i.e., calling both the methods in parallel can lead to deadlock).

cycle by traversing each cycle in sequence (see Figure 4-8).

Our tool reports deadlock possibilities for simple cycles only, but it is possible to

construct cases where a non-simple cycle causes deadlock even though its component

cycles do not. The code in Figure 4-9 is such a case; its lock-order graph matches

that of Figure 4-8. The two simple cycles {C, A} and {C, B} correspond to the lock

orders obtained by calling methods method1() and method2(), respectively. Calling

only one of these methods cannot produce deadlock, so the {C, A} and {C, B} cycles

do not indicate a realizable deadlock. The non-simple cycle {C, A, C, B} corresponds

36

class PrintStream {

public void println(String s) {

synchronized (this) {

print(s);

newLine();

}

}

public void print(String s) {

if (s == null) {

s = "null";

}

write(s);

}

private void write(String s) {

try {

synchronized (this) {

...

}

}

...

}

}

Figure 4-10: Code excerpt from Sun’s java.io.PrintStream class. Due to the re-
peated synchronization on this, an intraprocedural analysis reports a spurious dead-
lock possibility while an interprocedural analysis does not.

to the lock order obtained by calling both method1() and method2(). Deadlock can

result from calling both of these methods, each in a separate thread.

The above example illustrates that non-simple cycles in graphs can correspond to

realizable deadlock. Because our tool does not give reports for non-simple cycles, such

deadlock may escape a user’s attention. However, as we have never observed such a

case in practice, the analysis reports only the simple cycles as a way of compressing

the results. For completeness, the user should consider these cycles in combination.

Note that this issue does not affect the soundness of our tool. Any library for which

the tool prints 0 reports has no cycles in its lock order graph, and therefore no non-

simple cycles, either.

37

4.5 Intraprocedural Weaknesses

Our analysis is interprocedural, because our experience is that an intraprocedural

analysis produces too many false reports. For example, Figure 4-10 illustrates part of

Sun’s java.io.PrintStream class, in which both println() and write() attempt to

lock this. An intraprocedural analysis cannot prove that the same object is locked

in both methods. Thus, it reports a deadlock possibility corresponding to the case

when two concurrent calls to println() result in different locking orders on a pair of

PrintStream objects. However, because the objects locked are always equivalent, the

second synchronization does not affect the set of locks held. This spurious report is

omitted by our interprocedural analysis.

38

Chapter 5

Reducing False Positives

Like many static analyses, our tool reports false positives. A false positive is a report

that cannot possibly lead to deadlock, because (for example) it requires an infeasible

aliasing relationship or an infeasible set of paths through the program. False positives

reduce the usability of the tool because verifying that the report is spurious can be

tedious. We have implemented sound optimizations that reduce the number of false

reports without eliminating any true reports.

5.1 Unaliased Fields

An unaliased field is one that always points to an object that is not pointed to by

another variable in the program. As an optimization, our analysis detects these fields,

and assigns a unique type to each of them. This can decrease the number of deadlock

reports by disambiguating unaliased field references from other nodes in the lock-

order graph. (It is necessary to create a node for these fields, rather than discarding

information about synchronization over them. Although they have no aliases, they

may still be involved in deadlock.)

The following analysis is used to discover unaliased fields. Initially, all non-public

fields are assumed to be unaliased. As the analysis visits each statement in the library,

that assumption is nullified for a field f if any of the following patterns apply:

1. f is assigned a non-null, non-newly-allocated expression.

39

2. f appears on the right-hand side of an assignment expression.

3. f appears outside any of the following expressions: a synchronized statement

target, a comparison expression (e.g., foo == bar), an array access or array

length expression, or as an argument to a method that does not allow it to

escape.

A simple iterative escape analysis determines which arguments escape a method.

Calls from the library to its methods as well as calls to the JDK are checked; argu-

ments are assumed to escape methods where no source is available.

The analysis presented in Section 4.1 introduces a new symbolic heap object for

every reference to a field. This is necessary because the analysis does not model the

possible values of fields. Unaliased fields are restricted in the possible values they may

hold. In particular, they are always assigned new objects, and, if they are reassigned,

their old objects cannot be accessed. Because of this property, nested synchronization

over the same field of a given object can be treated as a no-op (thereby eliminating

spurious reports), since only one of the values locked is accessible. That is, one of the

two synchronized statements is on a lock that no longer exists and should therefore

be ignored. The analysis uses the same heap object for all references to the same

unaliased field within a given object, thereby regarding nested synchronizations as

no-ops as desired. This heap object propagates across call sites rather than being

mapped to pp⊥.

In order to correctly distinguish references to a given unaliased field in different

objects, the heap object corresponding to the field reference stores the heap object of

that field’s containing object (its prefix). The prefix may be any kind of heap object:

the this pointer, a local variable, a reference to another unaliased field, etc. When

the prefix is itself a reference to an unaliased field, it also stores its own prefix. The

chain of prefix heap objects is capped by the analysis to ensure termination.

Prefix objects are stored not only to distinguish field references among different

prefix objects, but also to retain the appropriate calling context when propagating

these heap objects across call sites. At the method boundary, the prefix object is

40

renamed according to the algorithm given in Section 4.1.

In addition to detecting unaliased fields, our analysis stores the set of possible

runtime types of these fields. This information is readily available for unaliased fields,

as they are only assigned fresh objects (created with the new keyword). With this

information, the analysis can determine a more precise set of possible callee methods

when an unaliased field is used as a prefix.

Detecting and utilizing unaliased fields can be very beneficial. For example, this

optimization reduces the number of reports from over 909 to only 1 for the jcurzez

library, and from 66 to 0 for the httpunit library.

5.2 Callee/Caller Type Resolution

Accurate knowledge about dynamic types prevents locks on one object from being

conservatively assumed to apply to other objects. In general, the dynamic types

of arguments are a subclass of the declared parameter types; likewise, the dynamic

type of the prefix is a subclass of its declared type in the caller. Callee/caller type

resolution collects extra type information by leveraging the fact that the declared

types of objects in callees and callers sometimes differ.

To understand the benefits of type resolution, consider the following:

Object o;

o.hashCode();

When analyzing a particular implementation of hashCode(), say, in class Date, the

receiver is known to be of type Date, not Object as it was declared in the above code.

The callee/caller type resolution optimization takes advantage of this information

when integrating the lock-order graph for a callee such as Date.hashCode() into that

of the caller. Instead of using the callee or caller type exclusively, the more specific

type is used. This results in more precise type information in the overall lock-order

graph, thereby decreasing the size of the alias sets. Type resolution can have a large

impact on spurious reports: reports for the croftsoft library decrease from 1837 to 2,

and reports for the jasperreports library decrease from 28 to 0.

41

rename from callee to caller context(sm, s, n) returns State s′m
s′m ← sm

∀j ∈ [1, n] : formal j ← sm.env[vj] // formal parameter
∀j ∈ [1, n] : actual j ← s.env[vj] // actual argument
∀o ∈ sm.g :

if ∃ j s.t. o.pp = formal j.pp // types may differ: compare allocation site only

// o is formal parameter j of callee method
then if actual j ∈ s.locks

// caller locked o, remove o from callee graph
then s′m.g, s′m.roots ← splice out node(sm.g, sm.roots, o)
// caller did not lock o, rename o to actual arg

else if o.T ⊑ actual j .T // use more specific type

then s′m.g, s′m.roots ← replace node(sm.g, sm.roots, o, 〈actual j.pp, o.T〉)
else s′m.g, s′m.roots ← replace node(sm.g, sm.roots, o, actual j)

// o is not from caller, rename o to static placeholder pp
⊥

else s′m.g, s′m.roots ← replace node(sm.g, sm.roots, o, 〈pp⊥, o.T〉)

Figure 5-1: Code for callee/caller type resolution optimization. The original code
appears in Figure 4-3. Changes are annotated with boxed comments.

5.3 Final and Effectively-Final Fields

For final fields, all references are to the same object. Our analysis takes advantage

of this fact by using the same heap object for each of the references to the same final

field within a given object rather than creating a new heap object for each reference.

These heap objects store the field’s receiver object in the same manner as unaliased

fields. The analysis also detects fields that are effectively-final: non-public fields that

are not assigned a value (except null) outside their constructor. Exploiting final

fields reduces the number of reports from 46 to 32 for the Classpath library.

5.4 Method Synchronization Target

For simplicity, the analysis presented in Section 4.1 introduces a fresh symbolic heap

object to represent the return value of a method call. Some libraries perform synchro-

nization over method calls, and often these methods return a final or effectively-final

field (e.g., many classes in the java.awt package of both the JDK and Classpath syn-

chronize over Component.getTreeLock(), which returns a static final field). Using

42

class C {

private C bornBefore;

BornBefore(C bornBefore) {

this.bornBefore = bornBefore;

}

public synchronized void qux() {

synchronized (bornBefore) {

...

}

}

}

Figure 5-2: The field bornBefore is necessarily created before its containing object
since it is only assigned an argument to the constructor. The born-before analysis
determines this fact and eliminates the report that would otherwise be printed for
method qux().

a fresh heap object in this case is problematic because nested synchronization over

the same method call produces a cycle (and therefore a false report) rather than being

detected as a no-op.

The method synchronization target optimization more precisely determines the

possible return values of method calls. It stores the heap objects corresponding to the

possible return values of each method in the method’s summary. When a method call

is used as a synchronization target, these heap objects are updated for the context of

the callee using the algorithm presented in Section 4.1. The body of the synchronized

statement is then analyzed considering in turn each of the return values as the target

of the synchronization. Using the more precise return value for methods that always

return the same final field allows nested synchronization over such methods to be

considered a no-op as desired. This optimization reduces the number of reports for

Classpath from 42 to 32 and for Jess from 26 to 23.

5.5 Born-Before

A final optimization concerns the relationship between a field and its containing

object. A field is considered born-before its containing object if it is necessarily created

43

before that object. Arguments passed to a constructor are necessarily created before

the object being constructed. The analysis that detects born-before fields utilizes

this fact: born-before fields are those that are only assigned an argument to the

constructor. The field named bornBefore in Figure 5-2 is an example of a born-before

field.

We wrote an analysis to identify born-before fields. When a lock is held on a

given object and one of its born-before fields is locked, the edge added to the lock-

order graph is marked to indicate this fact. Later, when cycles are detected, if all

the edges in the cycle are marked born-before, the report corresponding to that cycle

is omitted. Cycles in which all edges are marked born-before do not indicate a true

deadlock possibility. These cycles represent a sequence of lock acquires in which

a given order is respected—that of object creation—so deadlock cannot occur. An

analogous (but unimplemented) optimization could also be useful for the case where

a born-before field is locked before its containing object.

The born-before optimization eliminates 2 reports from both the JDK and Class-

path, and 1 report from htmlparser, which verifies that library to be deadlock-free.

Note that the final lock-order graph for htmlparser contains a cycle consisting of a

single node and edge (see Figure 6-1), but the edge is marked born-before, so the

report corresponding to that cycle is omitted.

Note that the cycles omitted by the born-before analysis may still be involved in

non-simple cycles that can deadlock (see Section 4.4.1). Users interested in deadlock

resulting from non-simple cycles may wish to disable this optimization.

44

Chapter 6

Results

We implemented our deadlock detector in the Kopi Java compiler [11], which inputs

Java source code. Our benchmarks consist of 18 libraries, most of which we obtained

from SourceForge and Savannah1. The results appear in Figure 6-1. The analysis ran

in less than 3 minutes per library on a 3.60GHz Pentium 4 machine. For the larger

libraries, it is prohibitively expensive to compute all possible deadlock reports, so we

implemented a set of unsound heuristics to filter them (see Section 6.3).

6.1 Deadlocks Found

We invoked 14 deadlocks in 3 libraries; 12 of these deadlocks were previously unknown

to us. We verified each instance by writing client code that causes deadlock in the

library. There are at least 7 deadlocks in the JDK, 5 in GNU Classpath, and 2 in

ProActive.

As described in Section 4.4, our analysis groups reports based on the lock variables

involved. Some of the deadlocks described below can be induced through calls to any

of a number of different methods with the same locking pattern; we only describe a

single case, and report the number of deadlocks in this conservative fashion.

1ProActive [22], Jess [15], SDSU [28], and Sun’s JDK [31] are not from SourceForge or Savannah,
but are freely available online.

45

Graph size
Code size Original Pruned Dead-

Library sync Classes kLOC Nodes Edges Nodes Edges Reports locks

JDK 1.4 1458 1180 419 335 1153 65 277 72 ∗ ≥7
Classpath 0.15 754 1074 295 191 294 15 22 32 ∗ ≥5
ProActive 1.0.3 199 407 63 90 56 3 3 3 ∗ ≥2
Jess 6.1p6 111 125 27 47 140 12 30 23 ∗ ≥0
sdsu (1 Oct 2002) 69 139 26 19 8 2 2 3 ∗ ≥0
jcurzez (12 Dec 2001) 24 27 4 5 8 1 1 1 0
httpunit 1.5.4 17 117 23 56 2 0 0 0 0
jasperreports 0.5.2 11 271 67 46 80 0 0 0 0
croftsoft (09 Nov 2003) 11 108 14 46 23 1 1 2 0
dom4j 1.4 6 155 41 110 180 1 1 1 0
cewolf 0.9.8 6 98 7 23 16 0 0 0 0
jfreechart 0.9.17 5 396 125 31 6 0 0 0 0
htmlparser 1.4 5 111 22 30 8 1 1 0 0
jpcap 0.01.15 4 58 8 9 0 0 0 0 0
treemap 2.5.1 4 47 7 17 1 0 0 0 0
PDFBox 0.6.5 2 127 28 30 0 0 0 0 0
UJAC 0.9.9 1 255 63 20 0 0 0 0 0
JOscarLib 0.3beta1 1 77 6 17 0 0 0 0 0

∗ Unsound filtering heuristics used (see Section 6.3)

Figure 6-1: Number of deadlock reports for each library. The table indicates the size
of each library in terms of number of synchronized statements (given in the column
labeled sync), number of classes (source files), and number of lines of code (in thou-
sands). The size of the lock-order graph is measured before and after pruning nodes
and edges that are not part of a strongly connected component. “Deadlocks” shows
the numbers of confirmed deadlock cases in each library. The JDK and Classpath
results are for packages in java.*. We were unable to compile 6 source files in JDK
due to bugs in our research compiler.

6.1.1 Deadlocks Due to Cyclic Data Structures.

Of the 14 deadlocks we found, 7 are the result of cycles in the underlying data struc-

tures. As an example, consider java.util.Hashtable. This class can be deadlocked

by creating two Hashtable objects and adding each as an element of the other, i.e.,

by forming a cyclic relationship between the instances. In this circumstance, call-

ing the synchronized equals() method on both objects in different threads can yield

deadlock. The equals() method locks its receiver and calls equals() on its members,

thus locking any of its internal Hashtable objects. When run in two threads, each of

the calls to equals() has a different lock ordering, so deadlock can result.

Although this example may seem degenerate, the JDK Hashtable implementation

46

attempts to support this cyclic structure: the hashCode() method prevents a potential

infinite loop in such cases by preventing recursive calls from executing the hash value

computation. A comment within hashCode() says, “This code detects the recursion

caused by computing the hash code of a self-referential hash table and prevents the

stack overflow that would otherwise result.”

In addition to Hashtable, all synchronized Collections and combinations of such

Collections (e.g., a Vector in a cyclic relationship with a Hashtable) can be dead-

locked in a similar fashion. This includes Collections produced via calls to Collec-

tions.synchronizedCollection(), Collections.synchronizedList(), Collections.

synchronizedSortedMap(), etc. For the purposes of reporting, all these cases are

counted as a single deadlock in both the JDK and Classpath.

Deadlock resulting from cyclic data structures is quite difficult to correct. Locks

must be acquired in a consistent order, or they must be acquired simultaneously. To

do either of these things requires knowing which objects will be locked by calling a

given method. Determining this information without first locking the container object

is problematic since its internals may change during inspection. It appears that the

only solution is to use a global lock for synchronizing instances of all Collection

classes. This solution is undesirable, however, because it prevents multi-threaded

uses of different Collection objects. Library writers may instead choose to leave

these deadlock cases in place, but document their existence and describe how to

appropriately use the class.

Not only do these cyclic data structures lead to deadlock, but they may also result

in a stack overflow due to infinite recursion. A number of the classes having this kind

of deadlock also have methods that produce unbounded recursion for the case of

cyclic data structures. It seems that these deadlock cases reveal intended structural

invariants (i.e., that a parent object is not reachable through its children) about the

classes they involve.

The remaining 5 cyclic deadlocks are similar to that described above. Figure 6-2

gives a code excerpt for a method in java.awt.EventQueue, and illustrates another

cyclic deadlock present in both the JDK and Classpath. Besides this case, another

47

class EventQueue {

public synchronized void postEvent(AWTEvent evt) {

// next is a field that can be set via a

// public method, push(EventQueue).

if (next != null) {

next.postEvent(evt);

return;

}

...

}

}

Figure 6-2: Code excerpt from Classpath’s java.awt.EventQueue’s postEvent method,
code analogous to this exists in the JDK. Deadlock can be invoked by creating two
EventQueue objects, o1 and o2, and calling o1.push(o2); o2.push(o1);. Subsequent
calls to postEvent() using those objects as receivers, each in its own thread, can lead
to deadlock.

deadlock can occur using the JDK’s java.awt.Menu class when two Menus are added

to each other using the add() method. In this circumstance, calling the non-public

Menu.shortcuts() method for each of the Menus via MenuBar.shortcuts() leads to the

synchronization necessary to induce deadlock. A similar bug also exists in Classpath’s

java.util.logging.Logger class. The final cyclic deadlock is in a ProActive class

named AbstractDataObject. This class has a putChild() method which allows a

client to add one AbstractDataObject as a child of another, and a number of methods

that lock this and then lock a child, which can be used to produce deadlock.

6.1.2 Other Deadlock Cases.

In addition to the cyclic case described above, ProActive exhibits a subtle deadlock in

the ProxyForGroup class. Through a sequence of calls, the asynchronousCallOnGroup()

method of ProxyForGroup can be made to lock both this and any other ProxyFor-

Group. Instantiating two or more ProxyForGroup objects and forcing each to lock the

other induces deadlock. The state necessary to produce this scenario is relatively

complex. The offending method contains, within four nested levels of control flow, a

method call that returns an Object; under certain circumstances, the object returned

is a ProxyForGroup, as needed to produce deadlock. We would not expect a library

48

class StringBuffer {

synchronized StringBuffer

append(StringBuffer sb) {

...

// length() is synchronized

int len = sb.length();

...

}

}

(StringBuffer.append(StringBuffer)

locks StringBuffer.this,

StringBuffer.length()

locks Parameter[sb])

StringBuffer

StringBuffer a =

new StringBuffer();

StringBuffer b =

new StringBuffer();

thread 1: a.append(b);

thread 2: b.append(a);

Figure 6-3: Library code, lock-order graph, and client code that deadlocks JDK’s
StringBuffer class. This deadlock is also present in Classpath.

class PrintWriter {

PrintWriter(OutputStream o) {

lock = o;

out = o;

}

void write(char buf[],

int off, int len) {

synchronized (lock) {

out.write(buf, off, len);

}

}

}

class CharArrayWriter {

CharArrayWriter() {

lock = this;

}

void writeTo(Writer out) {

synchronized (lock) {

out.write(buf, 0,

count);

}

}

}

// c.lock = c

c = new CharArrayWriter();

// p1.lock = c

p1 = new PrintWriter(c);

// p2.lock = p1

p2 = new PrintWriter(p1);

thread 1: p2.write("x",0,1);

thread 2: c.writeTo(p2);

Figure 6-4: Simplified library code from PrintWriter and CharArrayWriter from Sun’s
JDK, and, on the right, client code that causes deadlock in the methods. In thread
1, p1 is locked first, then c; in thread 2, c is locked, then p1. Because the locks are
acquired in different orders, deadlock occurs under some thread interleavings.

writer to notice this deadlock possibility without using a tool like ours.

We invoked 4 additional deadlocks in the JDK. One deadlock is in BeanContext-

Support as described in Chapter 1. A second deadlock is in StringBuffer.append(),

as illustrated in Figure 6-3. This deadlock occurs because append() is a synchronized

method (i.e., it locks this), and it locks its argument. Thus, using the client code

in Figure 6-3, if a is locked in thread 1, and b is locked in thread 2 before it is in

thread 1, deadlock results. Note that this is an example of a case where only a single

method is used to cause deadlock.

Another deadlock from the JDK occurs in java.io.PrintWriter and java.io.

CharArrayWriter. Simplified code for this deadlock is shown in Figure 6-4. The

PrintWriter and CharArrayWriter classes both contain a lock field for synchronizing

I/O operations. In PrintWriter, the lock is set to the output stream out, while in

CharArrayWriter, the lock is set to this.

The last deadlock in the JDK is located in java.awt.dnd.DropTarget. This class

49

DropTarget a = new DropTarget(), b = new DropTarget();

Component aComp = new Button(), bComp = new Button();

aComp.setDropTarget(a);

bComp.setDropTarget(b);

thread 1: a.setComponent(bComp);

thread 2: b.setComponent(aComp);

Figure 6-5: Client code that induces deadlock in the JDK’s DropTarget class.

can be deadlocked by calling setComponent() with an argument (of type Component)

having a valid DropTarget set. When this call is made, the receiver is locked followed

by the argument’s DropTarget. Thus, the code in Figure 6-5 can lead to deadlock.

In addition to each of these cases, it is also possible to deadlock each of the

synchronized Collections in the JDK and Classpath without creating a cyclic data

structure. The equals() and other methods in these classes lock their receiver and

their argument (for example, Hashtable.equals() calls the synchronized method

Hashtable.size() on its argument), so calling equals() on two Hashtable objects,

each in their own thread produces deadlock analogous to the StringBuffer case. We

do not count this in our deadlock cases since we found it using another tool. Our tool

can detect these deadlocks, however.

GNU Classpath exhibits 2 deadlocks besides those described so far. The first is

in StringBuffer, and is analogous to the JDK bug described above. The second is

in java.util.SimpleTimeZone. The SimpleTimeZone.equals(Object) method is syn-

chronized and locks its argument; it is therefore susceptible to the same style of

deadlock as that of StringBuffer.append().

It is interesting to note that JDK and Classpath implementations of SimpleTime-

Zone and Logger differ in their locking behavior: it is not possible to invoke deadlock in

these classes using the JDK. Similarly, the Classpath implementations of PrintWriter

and CharArrayWriter do not deadlock; other relevant portions of Classpath are not

fully implemented.

50

6.1.3 Fixing Deadlocks.

There are a number of viable solutions to the deadlocks presented above. The methods

performing synchronization could be written to acquire the needed locks in a set

order. Java could be extended with a synchronization primitive to atomically acquire

multiple locks. A utility routine could be written to accomplish the same effect as

this primitive, taking as arguments a list of locks to acquire and a thunk to execute,

then acquiring the locks in a fixed order. These solutions require knowledge of the

set of locks to be acquired. Sometimes this is immediately apparent from the code;

otherwise, a method that determines the locks required for an operation could be

added to an interface. In all these cases, the implementation could order the locks

using System.identityHashCode(), breaking ties arbitrarily but consistently. Note

however, that these solutions assume that the needed locks will not change while

they are being determined. If they might change, it may be necessary to use a global

lock for the classes involved in the deadlock.

6.2 Verifying Deadlock Freedom

Using our tool, we verified 13 libraries to be free from the class of deadlocks described

in Section 3.2. Note that these libraries may perform callbacks to client code, some

extend the JDK, and most perform reflection; our technique does not model synchro-

nization resulting from these behaviors. For 10 of these libraries, the verification is

fully automatic, with 0 reports from our tool. Across the other 3 libraries, our tool

reports a total of 4 deadlocks, which we manually verified to be false positives.

The false report in jcurzez is for a scenario in which an internal field f of the same

type as its containing class is set to a parameter of the constructor. To eliminate this

report, the analysis would have to combine several facts and additional optimizations.

Croftsoft gives two spurious reports because an object involved in the synchronization

cannot have the runtime type that our tool conservatively assumes to be possible. The

final report is for dom4j, and is spurious because of infeasible control flow.

51

6.3 Unsound Filtering Heuristics

For the larger libraries, the number of reports given by our algorithm is too high

(more than 100,000 for the JDK) for each to be considered by hand. In addition,

it is computationally demanding to report every deadlock possibility. In order to

make the tool more usable for large libraries (both in terms of number of reports

and time needed to gather them) our tool uses unsound filtering heuristics. These

heuristics aim to identify reports that have the greatest likelihood of representing

a true deadlock. However, as unsound heuristics, they also have the potential to

eliminate true deadlock cases from consideration.

Our tool applies two filtering heuristics on certain of the libraries in Figure 6-1.

One heuristic is to restrict attention to cycles in the lock-order graph that are shorter

than a given length. For the filtered libraries, only cycles with two or fewer nodes

were reported. Shorter cycles contain fewer locks, and are easier to examine manually.

In addition, shorter cycles might be more likely to correspond to actual deadlocks,

as each edge in a cycle represents a pair of lock acquisitions that has some chance of

being infeasible (due to infeasible control flow or aliasing relationships).

The second filtering heuristic is to assume that the runtime type of each object

is the same as its declared type. This reduces the number of reports in two ways.

First, the analysis ceases to account for dynamic dispatch, as it assumes that there is

exactly one target of each method call. This causes the lock-order graph for a given

method to be integrated at fewer call-sites, thereby decreasing the number of edges

in the overall graph. Second, this heuristic causes the top level routine (Figure 4-

5) to forgo expansion of each edge into edges between all possible subclasses. This

heuristic has some intuitive merit because it restricts attention to code that operates

on a specific type, rather than a more general type. For example, it considers the

effects of all synchronized methods of a given class, but it eliminates the assumption

that all objects could be aliased with a field of type Object that may be locked

elsewhere.

52

Chapter 7

Related Work

The long-standing goal of ensuring that concurrent programs are free of deadlock re-

mains an active research focus. Mukesh [30] divides these efforts into three categories:

1) deadlock prevention, in which a program is designed such that it is never susceptible

to deadlock, 2) deadlock avoidance, in which the system dynamically avoids possible

deadlock situations, and 3) deadlock detection, in which deadlock is detected (and

possibly corrected) at runtime. Our analysis falls in the first category, as it exposes

deadlock possibilities at compile time so that they can be fixed prior to execution.

We discuss related work in each area below.

7.1 Static Deadlock Prevention

Several researchers have developed static deadlock detection tools for Java using lock-

order graphs [23, 1, 32]. To the best of our knowledge, the Jlint static checker [23]

is the first to use a lock-order graph. The original implementation of Jlint considers

only synchronized methods; it does not model synchronized statements. Artho and

Biere [1] augment Jlint with limited support for synchronized statements. However,

their analysis does not report all deadlock possibilities. It only considers cases they

reason are most fruitful for finding bugs: 1) all fields and local variables are assumed to

be unaliased, meaning that two threads must lock exactly the same variable to elicit a

deadlock report, 2) nested synchronized blocks are tracked only within a single class,

53

not across methods in different classes, and 3) inheritance is not fully considered. Jlint

is unable to detect 3 of the 14 deadlocks we detect, including the BeanContextSupport

and PrintWriter deadlock cases from the JDK, and the Hashtable.equals() deadlock

in Classpath. Our tool reports all possibilities and incorporates flow-sensitivity and

context-sensitivity to reduce the number of false-positive reports.

von Praun computes alias sets between abstract objects using a “heap shape

graph” and constructs a lock-order graph using context-sensitive lock sets [32, pp.105–

110]. Our analysis was developed independently [33] from von Praun’s, and the

primary difference is that ours reports all deadlock possibilities: if there are no reports,

then the library is guaranteed to be deadlock-free. In contrast, von Praun’s analysis

(in an effort to reduce false-positives) suppresses reports in which all locks belong to

the same abstract object; as a consequence, it does not find 12 of the 14 deadlocks

exposed by our tool. While von Praun’s analysis could be trivially modified to report

such cases, it would then report, in addition, all of the benign cases that repeatedly

lock a single concrete object (as in Figure 4-10). Suppressing these reports is the

motivation for the flow-sensitive and interprocedural aspects of our analysis: our

analysis can prove that two object references are identical, thereby qualifying repeated

synchronizations on a given object as benign. von Praun’s analysis does not offer

such guarantees, in part because it is flow-insensitive and unification-based. Also,

von Praun’s analysis does not consider that wait() can introduce a cyclic locking

pattern (as in Figure 4-6).

A secondary difference between our analysis and von Praun’s is that ours applies to

a library, while his applies to a whole program. In the context of an entire program,

von Praun performs a field-sensitive alias analysis that is more sophisticated than

ours. However, it is unclear how to adapt this analysis to model efficiently all possible

calling patterns (i.e., all sequences of methods with all possible arguments) to a

library. Also, there may be little benefit to performing a sophisticated alias analysis

on a library, as many fields can be caused to be aliased under a certain calling pattern.

An important exception is “unaliased fields”, which we detect using a simple analysis

(see Section 5.1). Nonetheless, it would be straightforward to substitute a more

54

precise alias analysis into our tool if this proved to be valuable in future work.

A final difference between our tool and von Praun’s is a substantial experimental

evaluation in which we found 14 instances of deadlock in 3 libraries and proved 13

libraries to be deadlock free. von Praun found bugs in examples, but not in real

programs (and is unable to prove deadlock freedom).

RacerX [13] is a flow-sensitive, context-sensitive tool for detecting deadlocks and

race conditions in C systems code. RacerX builds an expanded control flow graph

for an entire operating system, then tracks the possible sequences of lock acquisitions

along every path. Like our analysis, RacerX allows multiple entry points (one for each

system call); we apply our analysis to libraries, while RacerX is intended for operating

systems. Because our tool analyzes Java instead of C, it operates under a different set

of constraints than RacerX. We fully account for objects and inheritance, reporting

all deadlock possibilities; RacerX operates on a procedural language, but might fail to

report every deadlock case due to function pointers and high-overhead functions. Our

tool analyzes the original source code, while RacerX requires annotations to indicate

the locking behavior of system-specific functions. Our tool exploits the hierarchical

synchronization primitives in Java; in C, precision is sacrificed due to the decoupling

of lock and unlock operations (sometimes on different paths of the same function, as

noted by the authors). Further, our tool improves precision for Java by tracking which

arguments are locked at each call site; RacerX does not perform an alias analysis for

local variables (which is perhaps less critical in C). Finally, we have invoked deadlock

for the reported errors. Reports from RacerX were verified by inspection, but it is

not clear how to create an environment that invokes the deadlock.

Several groups have taken a model-checking approach to finding deadlock in Java

programs. Demartini, Iosif, and Sisto [10] translate into the PROMELA language,

for which the SPIN model checker verifies deadlock freedom. PROMELA supports

processes (finite state machines) that communicate via message queues and shared

variables. A process is used to represent each thread as well as each lock; messages are

used to acquire and release locks. Their verification reports all deadlock possibilities

so long as the program does not exceed the maximum number of modeled objects or

55

threads. Our work differs in that we model an unbounded number of threads and

objects in relation to a library of methods (rather than a single program). Also, our

dataflow analysis scales to analyze programs up to 125 kLOC in under 2 minutes;

their model checking requires 6 hours to verify deadlock freedom in a 12 kLOC web

server. Finally, we fully deal with inheritance and overridden methods, while their

tool has some limitations.

Java Pathfinder [17] also performs model checking by translating Java to Promela,

including support for exceptions and polymorphism. Havelund and Skakkebæk use

Java Pathfinder to confirm a deadlock scenario in a user-selected subset of a Chinese

Chess server [16]. Java Pathfinder has also been used to analyze dynamic execution

traces; the locks acquired by each thread (during some execution) are modeled as a

tree, and a deadlock vulnerability is reported if two threads obtain locks in a different

order [18]. This approach records the exact alias relationships between threads, but

only for one execution of a program. It also detects “gate locks”: a shared lock that

guards each thread’s entry into a hazardous out-of-order locking sequence, thereby

preventing deadlock. Integrating gate locks with our technique could further reduce

spurious reports. This technique has evolved into a general online monitoring envi-

ronment called Java PathExplorer [19]. Based on runtime events, it uses a lock-order

graph to detect deadlock vulnerabilities between any number of threads.

Breuer and Valls [4] describe static detection of deadlock in the Linux kernel. They

are concerned with deadlocks caused by threads that call sleep while still holding a

spinlock. To detect such cases, they give an analysis for determining the number of

spinlocks held at a given program point. There is a deadlock possibility if a thread

sleeps when a spinlock might be held.

Chaki et al. [6] use counterexample-guided abstraction refinement and the MAGIC

verification tool [7] to detect deadlock in message-passing C programs. Their ab-

straction for a thread is a “labeled transition system” (LTS) in which nodes represent

control points and labeled edges represent control flow; if two systems share a label,

then the corresponding edges represent rendezvous points. While the LTS abstrac-

tion is designed for message-passing systems, a lock could also be modeled as its own

56

thread with lock and unlock transitions. The technique is compositional and efficient

(compared to traditional model checking) because the abstraction for each thread can

be refined independently until the overall system exhibits a bug or is proven free of

deadlock. However, unlike our analysis, the number of threads and locks (and their

interaction) must be known statically.

The Ada programming language allows rendezvous communication between a call

statement in one task and an accept statement in another. Most analyses for Ada

aim to verify that rendezvous communication succeeds, rather than considering the

order of synchronization on shared resources (locks). For example, Masticola and

Ryder [25] develop a “sync graph” for a subset of Ada in which nodes represent ren-

dezvous points and edges represent intervening control flow. They identify operations

that cannot happen concurrently in order to prune the graph, yielding a polynomial-

time algorithm for reporting all possible deadlocks (they also report false positives).

Corbett [9] evaluates three contrasting methods for finding deadlock in Ada programs;

two are based on model checking, and one is based on linear constraints. Petri nets

have also been used as a formal representation for detecting deadlock in Ada pro-

grams [12, 5, 27]. Many analyses (with the exception of [2]) rely on the common

case where Ada tasks are fixed and are initiated together, in contrast to Java threads

which are always created dynamically.

Boyapati, Lee, and Rinard [3] augment Java with a type system that ensures

deadlock freedom at compile time. They use ownership types to impose a partial or-

dering on all locks in the system, thereby guaranteeing that locks are always obtained

in the same order. While this is an elegant solution, it requires translating existing

programs to use new type annotations, and some computations might be difficult to

express given the constraints of the language.

Flanagan and Qadeer describe a type and effect system for atomicity [14]. In

their system, a method is atomic if it appears to execute serially, without interleav-

ing of other threads. They identify an atomicity violation in StringBuffer.append,

providing part of the impetus for our work.

57

7.2 Dynamic Deadlock Avoidance

Zeng and Martin augment a Java Virtual Machine (JVM) with a deadlock avoidance

mechanism [36]. They use a “lock-access ordering graph” (LAOG) that is similar to

our lock-order graph, except that it is constructed incrementally in the JVM based

on locks acquired at runtime. For each strongly connected component (SCC) that

forms in the LAOG, the JVM introduces a “ghost lock” that all subsequent threads

must acquire before locking any node in the SCC. This strategy avoids cycles of

lock acquisitions later in the execution, although the program could deadlock while

the graph is being built. They report a performance overhead of 3–14%; our static

analysis could be used to reduce this overhead by restricting the technique to locks

of interest.

7.3 Dynamic Deadlock Detection

Zeng describes a system that uses exceptions to indicate various kinds of deadlock in a

Java Virtual Machine [35]. Such a mechanism allows a client to intelligently respond

to deadlock in a library component. Pulse [24] is an operating system mechanism

that detects general deadlocks via speculative execution of blocked processes.

There is a large body of work on dynamically detecting deadlock in the context

of databases and distributed systems [30, 29]. Algorithms traditionally focused on

deadlock induced by either resources (such as shared locks) or communication (such

as rendezvous messaging); these analyses utilized Task Resource Graphs and Task

Wait-For Graphs, respectively, that are similar to our lock-order graphs. Such rep-

resentations were generalized by Holt [21] into a “general resource system” in which

some resources are reusable (e.g., locks) while others are consumable (e.g., communi-

cation tokens). Within this system, deadlock detection has been studied for various

forms of resource requests; for example, requesting single resources, sets of resources,

or boolean formulas over resources at a given time. Centralized deadlock detection

algorithms utilize a single processing hub; an example is Ho and Ramamoorhty’s two-

58

phase and one-phase commit algorithms [20]. Most research is focused on distributed

algorithms, which aim to detect deadlock without centralized control. A simple ex-

ample for the single-resource model is the Mitchell-Merritt algorithm [26]. Our work

differs in that we aim to detect deadlock possibilities statically in libraries.

59

60

Chapter 8

Conclusions

Library writers wish to ensure their libraries are free of deadlock. Because this as-

surance is difficult to obtain by testing or by hand, a tool for identifying possible

deadlock (or verifying freedom from deadlock) is desirable. Model checking is a pos-

sible approach to the problem, but the well-known state explosion problem makes it

impractical for most libraries.

We have presented a flow-sensitive, context-sensitive analysis for static detection

of deadlock in Java libraries. Out of 18 libraries, we verified 13 to be free of deadlock,

and found 14 reproducible deadlocks in 3 libraries. The analysis uses lock-order

graphs to represent locking configurations extracted from libraries. Nodes in these

graphs represent alias sets, edges represent possible lock orderings, and cycles indicate

possible deadlocks.

Our analysis is quite effective at verifying deadlock freedom and finding deadlock,

but it still produces a sizable number of false reports. Rather than asking the user to

investigate these reports, the reports could be dispatched to a model checker which

could automatically check for deadlock. In this framework, our tool would serve to

limit the search space of the model checker, possibly allowing sound verification of

large libraries.

Just as static verification of all possible program executions offers stronger guar-

antees than dynamic analysis of one or a few executions, verification that a library

cannot deadlock is preferable to checking that a particular client program does not

61

deadlock while using the library. To our knowledge, our tool is the first to address the

problem of deadlock detection in libraries. However, the technique is also applicable

to whole programs, and may prove to be effective in that context.

62

Bibliography

[1] Cyrille Artho and Armin Biere. Applying static analysis to large-scale, multi-

threaded Java programs. In ASWEC’01: 13th Australian Software Engineering

Conference, pages 68–75, Canberra, Australia, August 27–28, 2001.

[2] Johann Blieberger, Bernd Burgstaller, and Bernhard Scholz. Symbolic data flow

analysis for detecting deadlocks in Ada tasking programs. Ada-Europe, 2000.

[3] Chandrasekhar Boyapati, Robert Lee, and Martin Rinard. Ownership types for

safe programming: preventing data races and deadlocks. In Object-Oriented Pro-

gramming Systems, Languages, and Applications (OOPSLA 2002), pages 211–

230, Seattle, WA, USA, October 28–30, 2002.

[4] Peter T. Breuer and Marisol Garcia-Valls. Static deadlock detection in the Linux

kernel. In Ada-Europe 2004 International Conference on Reliable Software Tech-

nologies, pages 52–64, Palma de Mallorca, June 15–17, 2004.

[5] Eric Bruneton and Jean-Francois Pradat-Peyre. Automatic verification of con-

current Ada programs. In Ada-Europe’99 International Conference on Reliable

Software Technologies, pages 146–157, Santander, Spain, June 8–10, 1999.

[6] Sagar Chaki, Edmund Clarke, Joel Ouaknine, and Natasha Sharygina. Auto-

mated, compositional and iterative deadlock detection. In MEMOCODE 2004:

Second ACM-IEEE International Conference on Formal Methods and Models for

Codesign, San Diego, CA, USA, June 23-25, 2004.

63

[7] Sagar Chaki, Edmund M. Clarke, Alex Groce, Somesh Jha, and Helmut Veith.

Modular verification of software components in C. IEEE Transactions on Soft-

ware Engineering, 30(6):388–402, June 2004.

[8] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. Analysis of pointers

and structures. In PLDI, 1990.

[9] James C. Corbett. Evaluating deadlock detection methods for concurrent soft-

ware. IEEE Transactions on Software Engineering, 22(3):161–180, 1996.

[10] Claudio Demartini, Radu Iosif, and Riccardo Sisto. A deadlock detection tool

for concurrent Java programs. Software: Practice and Experience, 29(7):577–603,

June 1999.

[11] DMS Decision Management Systems GmbH. The Kopi Project, 2004. http:

//www.dms.at/kopi/.

[12] S. Duri, Ugo A. Buy, R. Devarapalli, and Sol M. Shatz. Application and ex-

perimental evaluation of state space reduction methods for deadlock analysis in

Ada. ACM Transactions on Software Engineering and Methodology, 3(4):340–

380, October 1994.

[13] Dawson Engler and Ken Ashcraft. RacerX: Effective, static detection of race con-

ditions and deadlocks. In Proceedings of the 19th ACM Symposium on Operating

Systems Principles, pages 237–252, Bolton Landing, NY, USA, October 19–22,

2003.

[14] Cormac Flanagan and Shaz Qadeer. A type and effect system for atomicity. In

Proceedings of the 30th Annual ACM SIGPLAN-SIGACT Symposium on Princi-

ples of Programming Languages, pages 338–349, New Orleans, LA, January 15–

17, 2003.

[15] Ernest Friedman-Hill. Jess, the Java expert system shell, 2004. http://

herzberg.ca.sandia.gov/jess/.

64

[16] Havelund and Skakkebæk. Applying model checking in Java verification. In

SPIN, September 1999.

[17] K. Havelund and T. Pressburger. Model checking Java programs using Java

PathFinder. Software Tools for Technology Transfer, 2(4):366–381, April 2000.

[18] Klaus Havelund. Using runtime analysis to guide model checking of Java pro-

grams. In SPIN, pages 245–264, 2000.

[19] Klaus Havelund and Grigore Roşu. Monitoring Java programs with Java PathEx-

plorer. In Proceedings of RV’01, First Workshop on Runtime Verification, 2001.

[20] H.S. Ho and C.V. Ramamoorthy. Protocols for deadlock detection in distributed

database systems. IEEE Transactions on Software Engineering, 8(6):554–557,

1982.

[21] Richard C. Holt. Some deadlock properties of computer systems. ACM Com-

puting Surveys, 4(3):179–196, September 1972.

[22] INRIA. Proactive, 2004. http://www-sop.inria.fr/oasis/ProActive/.

[23] Konstantin Knizhnik and Cyrille Artho. Jlint, 2005. http://jlint.

sourceforge.net/.

[24] Tong Li, Carla S. Ellis, Alvin R. Lebeck, and Danial J. Sorin. Pulse: A dynamic

deadlock detection mechanism using speculative execution. In USENIX Technical

Conference, pages 31–44, 2005.

[25] Stephen P. Masticola and Barbara G. Ryder. A model of Ada programs for static

deadlock detection in polynomial time. Workshop on Parallel and Distributed

Debugging, 1991.

[26] Don P. Mitchell and Michael J. Merritt. A distributed algorithm for deadlock

detection and resolution. In PODC ’84: Proceedings of the third annual ACM

symposium on Principles of distributed computing, pages 282–284, Vancouver,

BC, Canada, August 27–29, 1984.

65

[27] Tadao Murata, Boris Shenker, and Sol M. Shatz. Detection of Ada static dead-

locks using Petri Net invariants. IEEE Transactions on Software Engineering,

15(3):314–326, March 1989.

[28] San Diego State University. SDSU Java library, 2004. http://www.eli.sdsu.

edu/java-SDSU/.

[29] Chia-Shiang Shih and John A. Stankovic. Survey of deadlock detection in dis-

tributed concurrent programming environments and its application to real-time

systems. Technical report, UMass UM-CS-1990-069, 1990.

[30] Mukesh Singhal. Deadlock detection in distributed systems. IEEE Computer,

22(11):37–48, November 1989.

[31] Sun Microsystems, Inc. Java Development Kit, 2004. http://java.sun.com/.

[32] Christoph von Praun. Detecting Synchronization Defects in Multi-Threaded

Object-Oriented Programs. PhD thesis, Swiss Federal Institute of Technology,

Zurich, May 2004.

[33] Amy Williams, William Thies, and Michael D. Ernst. Static deadlock detection

in Java libraries. Research Abstract #102, MIT Computer Science and Artificial

Intelligence Laboratory, February 2004.

[34] Amy Williams, William Thies, and Michael D. Ernst. Static deadlock detec-

tion for Java libraries. In ECOOP 2005 — Object-Oriented Programming, 19th

European Conference, Glasgow, Scotland, July 25–29, 2005.

[35] Fancong Zeng. Deadlock resolution via exceptions for dependable Java applica-

tions. In DSN’03: International Conference on Dependable Systems and Net-

works, pages 731–740, San Fancisco, CA, USA, June 22–25, 2003.

[36] Fancong Zeng and Richard P. Martin. Ghost locks: Deadlock prevention for Java.

In Mid-Atlantic Student Workshop on Programming Languages and Systems,

South Orange, NJ, April 3, 2004.

66

